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This is a short presentation of some of the notable mathematical and physical aspects 
of the 3x3 formulation (URM3) of Unity Root Matrix Theory (URMT) [1]. 
 
The work has subsequently been extended to an nn  matrix formulation [2], 
retaining all of the URM3 features presented herein. Complex extensions to the n-
dimensional formulation of URMT complete the mathematical foundations upon 
which further physical aspects are derived. 
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1 Dynamical Equations 
 
Every description of a system has a set of equations describing its state and evolution. 
 
Here are three innocuous linear equations, they couple three objects ),,( zyx via six 
dynamical variables RQP ,, , RQP ,,  with a single, invariant eigenvalue C  
 

zQRyCx  , 
PzxRCy  , 

yPQxCz  . 
 
 The equations and variables are ternary in nature 
 x3 'coordinates' zyx ,,  
 x3 dynamical variables RQP ,,  and their conjugate forms RQP ,, , 
 real 0C , (an eigenvalue), C  and 0 appear later. 
 
 The equations are tightly coupled whereby each coordinate depends on the other 

two, with no favoured coordinate. 
 
 The dynamical variables have conjugacy properties, e.g. the product PP  is 

equivalent to the squared modulus of a complex number, *2 ZZZ  . 
The sum PP   is equivalent to twice the real component of a complex number, 
i.e. *)Re(2 ZZZ  . Conjugacy gives the theory a Hermitian, QM nature.  
 

 A later restriction to integers for all variables means that: 
 

Dynamical variables become power residues )(mod xCPP nnn  , and 
unity roots when 1C , e.g. )(mod1 xPP  . 
 
Conjugate relations exist between the dynamical variables )(mod1 xPP n  . 
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2 A Conservation Equation 
 

No conservation law, no physics. 
 
Defining the matrix A , coordinate vector X   
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then the dynamical equations in matrix form are, for eigenvalue C , 0C  
 

  XAX C . 
 
Defining the Kinetic term K  and Potential term V  as 
 

RRQQPPK  , 
C

RQPPQRV )( 
 , 

 
then, for eigenvalue C , the non-singular condition, 0)det(  IA C , gives the 
 

Dynamical Conservation Equation (DCE) 
 

VKC 2 . 
 
 The eigenvalue C  is invariably set to unity, i.e. 1C , but its presence is retained 

for dimensional consistency in all equations. 
 
 A consistent set of physical 1),...,(  LTCPPunits can be applied throughout, 

giving 22)(  TLPPunits , i.e. velocity squared = energy 2CE   (per unit mass). 
 
 When in integers: 

The eigenvalue 1C  implies a finite, zero-point energy 1E . 
The cubic term RQPPQR   remains divisible by C , despite appearances. 
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3 Invariance Transformations 
 

What remains invariant under transformation? 
 
Consider three local '  ,, ' variations in the following, variational matrix Δ  
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By definition, this matrix transforms (annihilates) the coordinate vector X  as in 
 

0ΔX . 
 
Subsequently, the dynamical equations and eigenvector X  remain invariant when 
transforming ΔAA  , i.e. 
 

  XAXΔXAXΔ)X(A C . 
 
A second and third global, variational matrix can be obtained by setting all three local 
variations  ,,  equal (to within a sign). 
 
When   , the matrix is termed a global Pythagoras delta variation, pΔ  
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P Δ , almost symmetric. 

 
When   , the matrix is termed a global skew delta variation, symbol SΔ  
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S Δ , skew symmetric. 

 
The latter, SΔ , is not used further herein, but note that sΔ  is similar to an Eulerian, 
infinitesimal rotation matrix, angles x , y  and z , rotation axis X . 
 
The global variation parameter   is later replaced by an equivalent integer parameter 
m , as part of an analytic solution m , Tmunits ),( , time. 
These matrix transformations provide a local and global symmetry operator, which 
leaves X  invariant to their action. 
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4 An Invariance Principle 
 

Physics is nicer derived starting with a conservation law and invariance principle 
 
Lets restart, with the Dynamical Conservation Equation, expanded in full 
 

CRQPPQRRRQQPPC /)(2  . 
 
and an Invariance Principle 
 

The dynamical equations and their solutions are invariant 
to a coordinate translation in the dynamical variables. 

 
The 'coordinate translation' is given by the local, variational matrix ),,( Δ , linking 
the dynamical variables with the coordinates zyx ,,  
 

 ΔAA  
xPP  , yQQ  , zRR   raised, 

xPP  , yQQ  , zRR   lowered. 
 
Applying these local  ,,  variations to the DCE gives three, separate, quadratic 
variational terms in  ,  , . The dynamical equations in zyx ,,  are obtained by 
equating the terms to zero, for arbitrary variations. 
 
 e.g.   term,  QxzxyRx  20  zQRyx  . 
 
Additionally, there are three linear variational terms in  ,,  which, when equating 
to zero, also give the three solutions in the coordinates, two of which are independent, 
 

e.g. the   term, gives z  in terms of x , )()( QRPxQPRz  .  
and the   term gives y  in terms of x , )()( RQPxRPQy  . 

 
This variational method gives both the dynamical equations and their solutions 
 
One such form of eigenvector solution, out of a possible nine, is 
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 Any zero divisors, e.g. PPC 2 , can be transformed away from zero by a Δ  

transformation, leaving X  invariant by definition. 
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5 Integers, Quantisation and Duals 
 

QM works for sure, so some form of quantisation is required. 
 
Another form of solution is, for y  in terms of x , 
 

xPQRCPPCy )()( 2  . 
 
The transition to integers is made by asserting the following co-primality criteria  
 

1),,gcd( zyx . 
 
This implies that, for some integer  , the following conditions apply 
 

xPPC  )( 2  and yPQRC  )( . 
 
By similar consideration of all nine possible solutions, this implies, for some integers 
 ,   and  , the following relations 
 

xPPC  )( 2 , 
yQQC  )( 2 , 
zRRC  )( 2 . 

 
These defining equations for  ,,  are symmetric upon interchange of  ,,  with 

zyx ,, . As such, they are duals to the coordinates zyx ,,  and vice-versa. 
 

x~ , y~ , z~ , 
~x , ~y , ~z , 

 
 ,,  is another triple, forming the co-vector  X ,   XAX C  

 
 The transition to integers effects a quantisation of the theory. 

This quantisation forces a finite non-zero, zero-point energy 12 C  and  
removes any chance of a singularity or infinity. 
Remember, quantisation resolved the ultra-violet catastrophe. 
 

 Summing all three gives 'the Potential equation', another conservation equation 
 

CRQPPQRzyxC /)(2 2    
in vector form 

VC  
 22XX  
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6 Variational Methods & Pythagoras 
 

STR also works, so Pythagoras is a must. 
 
Using the Global Pythagoras delta variation pΔ , derived earlier, and applying to the 

DCE, gives a 2  and   variational term, equated to zero for arbitrary variations 
2  term 

)()()(0 222 PPyzQQxzRRxyzyx  . 
  term 

)()()(
)()()(0

RRzQQyPPx
QPPQzPRRPyRQQRx




. 

 
From the 2  variational term, if the following Pythagoras Conditions arise 
 

PP   , QQ  , RR  , 
 
then another conservation equation emerges, i.e. the Pythagoras equation, 
 

2220 zyx  . 
 
Applying the Pythagoras conditions to the linear   expression gives a 3rd 
conservation equation, the ‘delta equation’ 
 

xPzRyQ 0 , 
 
and the DCE becomes the hyperbolic equation 
 

2222 RQPC  . 
The Potential equation becomes 
 


  XX22C . 

 
 All these conservation equations are 'Diophantine equations', when in integers, 

and the realm of number theory. 
 
From the conservation equations, three more scalar invariants 0 , 2C , 22C  arise to 
go with the three eigenvalue invariants C,0 . In fact, it is possible to also get 2C  
according to eigenvector scaling +/-1. 
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7 Pythagoras Continued… 
 
Under Pythagoras Conditions: 
 
The Potential CRQPPQRV /)(   vanishes, 0V  
 
Three, symmetric eigenvalues emerge with three associated eigenvectors  
 

C , 0 , C . 
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and their conjugates 
 

 zyx X ,  RQP 0X ,  X . 
 
The dual variables  ,   and   also satisfy the Pythagoras equation 
 

0222   . 
 
As regards '2+1' STR, Pythagoras gives null, photon-like intervals 
 

 2220 ctyx  , 
 
which, in unified notation ( xx  , yy  , ctz  , ztcz  ), is nicer written as 
 

zzyyxx 0 . 
 
By defining the transformation matrix 'T  Operator' (Minkowski metric +1 signature) 
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the conjugate vectors are related to their standard counterparts X , 0X  and X  
 

T)( 
  TXX , T)( 0

0 TXX  , T)( 
  TXX  
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8 An Analytic Solution 
 

An analytic solution is great, but it brings determinacy with it. 
 
Under Pythagoras conditions, this is a completely solved problem with an analytic 
solution for all variables, parameterised by three (yes, three more), arbitrary integers 
k , l  and m  (see further). 
 

klx 2 , )( 22 kly  , )( 22 klz  . 
 
The dual variables  ,,  and dynamical variables RQP ,,  are obtained by solving a 
linear Diophantine equation in unknown integers s  and t , given k  and l . 
 

ltksC  . 
 
This introduces some indeterminacy in an otherwise, deterministic solution. 
 
For particular solutions s  and t  , general solutions s  and t , parameterised by integer 
m , thought of as an evolution parameter (invariably time but could be length), the 
general solution is 

mlss  , mktt  , 
 

)( ltksP  , )( ktlsQ  , )( ktlsR  , 
 

st2 , )( 22 st  , )( 22 st  . 
 

The parameter m  is the same as   in the Pythagoras transformation pΔ . 
 
 The parameter m  is analogous to a winding number. For example, the dynamical 

variable P  transforms from its initial value P  as 
 

mxPxPP  ~ , 
i.e. 

)(mod xPP  . 
 
Thus, the evolutionary parameter m  acts as a quotient, winding P  around a loop of 
circumference x , m  times. 
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9  Physical Interpretation 
 

There's abstract mathematics, and there's the real world 
 
Physical quantities such as energy per unit mass ( 2C ), velocity (dynamical variables 

RQP ,,  and eigenvalue C ), and time m , have already been mentioned. 
 
To formalise, the following physical associations can be justifiably made and give a 
consistent, physical identity to the work 
 

m  time, 
X , zyx ,,  acceleration, 

0mX , RQP ,, , C  velocity, 

mX ,  ,,  position. 
 
 This is one, very useful physical association, parameter m  could also be length, 

mass or other. 
 
The justification for this comes from the fact that, by differentiating the evolution 
equations (see further) for the eigenvectors X , 0mX  and mX , the eigenvectors span 
zero, first and second order derivatives, to within a constant factor 2 . This constant 
can be scaled-out as eigenvectors are arbitrary to within a scale factor. 
 
So, for example, if parameter m  is associated with time, then mX  is a position 
quantity (derivative of 0mX ), 0mX  is a velocity quantity (derivative of X ) and X  is 
a constant acceleration quantity (with zero derivative). 
 
 Most importantly, this hints that calculus lurks naturally underneath. In fact, the 

A  matrix and variational matrices Δ  can also be used as derivative, proportional, 
and integral operators under a unified scheme. 
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10  Geometry 
 
A geometric interpretation is nice, and nicer when it looks like a page out of a 
relativity text. 
 
Since X  and X  are Pythagorean triples, their geometry is that of a discrete cone 
and, since the DCE is a hyperboloid, the geometry of 0X  is that of a discrete 
hyperboloid 
 

 R 

X0(P,-Q,-R)HU,-R>0 

HU=upper 
hyperboloid 

Q 
P HL=lower 

hyperboloid 

X0(P,-Q,R)HL,R<0 

 
 

 The union of all points in the cone C  and the hyperboloid H  forms a discrete 
lattice L . 

 
 As all points on the cones are Pythagorean triples, the cone's 'surface' is a zero-

Potential surface since, under Pythagoras conditions, 0V . 
 
The cone surface is therefore also one of constant energy ( 2C  by the DCE). 
 

 The cones have no tip at the origin - a (0,0,0) solution is not algebraically 
possible for any non-zero eigenvalue, i.e. no singularity at any point in the 
lattice, and also, therefore, at any time; see further. Likewise, the hyperbola 
has a finite, non-zero radius of C  at the origin.

 Z, 

X+(x,y,z)C
 

CU=upper cone 

x, 
y, 

CL=lower cone 

X-(,,-)CL 
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11  Evolution 
 
Static, time-independent solutions are a good start but, ultimately, a theory needs time 
evolution or equivalent. 
 
From the analytic solution, the eigenvector X  ),,( zyx  is completely characterised 
by parameters k  and l . 
 
With k  and l  fixed, the eigenvectors 0X  ),,( RQP   and X  ),,(    are solely 
characterised by parameter m  and evolve wrt X  as 
 

  XXX )0(mm  static, 
 

)0(00   mmm XXX , 
 

)0()0(2 0
2   mmmmm XXXX . 

 
X  is static and represents a single point in UC , 0z  (convention). 

0mX  traces out an evolving path, parameter m , on the hyperboloid H  ( 0mX ). 

mX  traces out an evolving path, parameter m , on the cone LC , 0  . 
 
 For each point on the X  cone UC , there is an entire cone LC  associated with it 

for mX , and a hyperboloid H  for 0mX , i.e. each X  is associated with an infinite 
(countable) set of X  and 0X . 

 
 Every 'point' ( ),,( zyx , ),,( RQP  , ),,(   ) in the lattice has the same set of 

invariants C,0 , 2C , 22C  arising from the conservation equations. 
 
The increment mX  in mX , 0m , approximates a scalar multiple m2  of X  
 

  XX mm 2 , 0m , 
 
and, since each X  is a Pythagorean triple with zero norm, the evolving path of mX  
ever closer approximates a null geodesic as m  grows larger. 
 
Furthermore, since every point on the cone is at zero potential, constant energy 2C , 
there is no Kinetic/Potential energy interchange and, thus, no force acting upon it. 
 
Therefore, mX  effectively moves in free-fall, with constant energy, on a null 
geodesic in LC  - think mass less photon. Curiously, LC  is attached to X , itself 
physically associated with a constant acceleration, when Tmunits )( , 

ECunits )( 2 . 
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12  Non-trivial Geometry 
 
GR works, so something more than a globally flat, Euclidean geometry, is required. 
 
The eigenvectors X , 0X  ( 0mX ) and X  (  mX ) are linearly independent, but are 
far from orthonormal, i.e. they are oblique and each of non-unit length. 

 

X0(P,-Q,R) 

X -(,,- ) 

X+(x,y,z) +- 
+0 0 - 

+0+0-=180deg 

note +0+0-+0 -? 360deg 

 
Defining the flatness parameter   as the ratio of the eigenvalue C  to the dynamical 
variable R , for 0R  

RC / , 0R . 
 
and, since R  is parameterised by the evolution parameter m , as in mzRR  , then, 
for large m , and to first order in m/1 , this approximates to 
 

mz
C 1






  , 1m . 

 
Denoting the angle between X  and X  by  , for small  , then 
 

21)cos(   , 1 , 
 
and the axes flatten out, 1)cos(  , as evolution progresses (large m ) and X  
evolves to become anti-parallel -180 to X  
 

 For 0m  (time zero), R  and z  are always finite, non-zero and the flatness is 
well defined and finite. Conversely, the curvature (next) is also finite, non-
zero. 

 
 The evolutionary parameter m  can be length, e.g. arc length, as well as time 

or, indeed, other. 
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13  Non-trivial Geometry continued… 
 

An inverse square law is always welcome. 
 
Defining Curvature  , as the rate of change of angle   with respect to the 
evolution parameter m , i.e., 

m / , 
 
and approximating for large evolutionary times m  (small flatness  ), gives the 
curvature as follows 
 

2

12
mz

C








 , 1m . 

 
This curvature for  , with respect to m , is an inverse square law *. 
* CAUTION m  here is physically associated with time (not distance), when 
speaking in terms of energy for the DCE and velocity for the dynamical variables. 
 
The same relation, barring a factor, applies to angles 0  and 0  respectively. 
 
The curvature is proportional to the eigenvalue C , which is effectively a free 
parameter for tuning, noting EC 2 , i.e. energy per unit mass (when m  is time) 

 
Non-trivial geometry: 

 
evolving curvature, 

 
always finite and non-zero, 

 
with no singularity. 
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14  Symmetry Breaking 
 

Too much symmetry, not enough complexity, something has to break. 
 
Under Pythagoras conditions, the global transformation pΔ  preserves the zero 
Potential and gives force-free, constant energy, null geodesic trajectories for X  on 
the lower cone. 
 
However, any one of the three local variations, whilst still leaving X  and the total 
energy 2C invariant, destroys the zero Potential and triggers an interchange of kinetic 
and Potential energy along both the X  and 0X  trajectories (parameterised by the 
local variation itself). 
 
The X  vector is no longer a Pythag triple and the lower cone is destroyed. Neither is 
the 0X  vector preserved and the hyperbola is also destroyed. Barring the invariant 

X  vector, the symmetry relating to the other two eigenvectors is completely broken. 
 
In other words, the local variation has broken the global symmetry and, by exchange 
of potential and kinetic energy, induced a force. 
 
There are three possible local variations in the 3x3 theory and so, in principle, three 
possible forces can be induced. This sounds good (too good) but are they all 
fundamentally the same? It is not so simple now... 
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15  Duality 
 

Very much in vogue, nice if you can get it. 
 
As mentioned earlier, but now under Pythagoras conditions, all equations are 
symmetric upon interchange of the dual variables  ,,  with zyx ,, . 
 
The divisibility factors  ,,  are therefore dual to the coordinates zyx ,,  and, 
consequently, mX  is also the dual eigenvector to X , i.e.   XX ~

m  or   mXX ~ . 
 
From the evolution equations, mX  evolves with respect to X  for large m , as 
 

  XX 2mm , 0m  
 
Thus, the vector mX  tends to look like X , scaled by 2m  and, barring scale, the two 
worlds mX  and X  look the same. 
 
So, by studying the world of X , then simply rescaling by 2m , gives the world of 

mX  and vice versa, i.e. you can work in the X  world, or its dual X  (but not both 
simultaneously). 
 
In terms of the null-cone sets UL CC , , this represents a duality between the small and 

large-scale geometry expressed as UL CC ~
  and LU CC ~

 . 
 
The middle ground (macroscopic world) is considered to be that of the eigenvector 

0mX  residing in the disjoint, hyperbolic set H . 
 
Relative to 0mX , the microscopic region is X  and the large scale region that of mX  
so, for large m , 

X ,  micro 

 XX mm0 , macro 

  XX 2mm , large 
 
Dividing throughout by m , and when viewed with respect to 0mX , for large m  
 

  XX
m
1  ,   XX mm  

and 

0mX  sees an 
m

m 1,  duality between the microscopic and the very large. 
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16  And beyond... 
 

Invariably there are always limitations, open questions, and extensions required. 
 
STR is a given, so the preceding 2+1 formulation is not sufficient; four-vectors, e.g. 

),,,( ctzyx , and non-zero intervals c , are required. Some more complexity and more 
dynamical variables might be nice too (for all the numerous particles)? 
 
The theory can be extended to 4D, whilst retaining the existing properties, by 
embedding 3x3 in a 4x4 formulation. Additionally, this naturally adds full conjugacy 
( zyx ,, ), ),,(   and non-trivial 4-vectors X  (further below) 
 




















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0

0
0

PQz
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QRx
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



















z
y
x
0

X ,  zyx0 
 XX , 

 
0  XX ,   XAX C ,   XAX C  (Hermitian). 

 
Solutions can be lifted, retaining an invariant, 3-element X , but now obtaining a 
non-invariant, 4-element X  





















d
c
b
a

X , 22220 dcba   

 
This still gives a zero interval for X , so how about embedding 4x4 in a 5x5 to get a 
full 4D space-time with non-zero interval (for X  only, not X  when lifting), 
something like: 
 




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







0
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
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












3

2

1

E
E
E

E ,  321 ,, EEE E  

 
The 4x4, 5x5 and nn  extensions to URMT are the realm of [2] and [5]. 
 
With some complex extensions, the n-dimensional formulation of URMT completes 
the mathematical foundations of the theory, with the next publication concentrating on 
the physical aspects. 
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