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9 Algebraic Fundamentals of Quaternions 

(9-1) Introduction 

This section is a basic introduction to quaternions and their algebraic properties. Together with the next 

section, it serves as a prelude to the treatment of rotations given in Sections (11) and (12). 

Quaternions were introduced around 1843 by W J Hamilton in an attempt to describe rotations in three 

dimensions by analogy with the usage of complex numbers in describing planar rotations about a single 

axis. Quaternions are described in a wealth of literature, and [8] offers a general descriptive overview 

under their generic name of 'hypercomplex' numbers. This text is primarily mentioned because it also 

relates to Clifford and Grassman algebras, in particular, exterior (or wedge/Grassman) products similar 

to those used in URMT's exterior product formulation given earlier in Sections (4) to (6); see [15] for a 

more detailed mathematical account of quaternions. Of course, there is also plenty of free material on 

the web. A relatively brief account is given here, which should be sufficient for the URMT material 

that follows. 

(9-2) Formal Definition of a Quaternion 

By defining three numbers (base elements) kji ,,  with the following properties: 

(9.1) 

(9.1a) 1222  kji  

(9.1b) kjiij   

(9.1c) ikjjk   

(9.1d) jikki  , 

and four arbitrary real numbers 0q , 1q , 2q , 3q , 

3210 ,,, qqqq ℝ, 

then a quaternion q  is defined in terms kji ,,  and 3210 ,,, qqqq  as the following number: 

(9.2) kqjqiqq 3210 q . 

Each of the three numbers kji ,,  are similar to the complex number i  because they square to 1  by 

definition (9.1a). However, there are now three of them and they do not commute, e.g. jiij  , albeit 

they do commute with real numbers, i.e. 

(9.3) ixxi  , jyyj  , kzzk  , zyx ,, ℝ, 

Thus, by (9.3) and definition (9.2), quaternions commute with real numbers, i.e. 

(9.4) kk qq  , k ℝ. 
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Because of the non-commutativity amongst kji ,, , the quaternions themselves do not commute, unlike 

complex numbers, discussed shortly below. 

The kji ,,  are also termed 'bases', and can be thought of as similar to the unit basis vectors ' kji ,, ' in 

standard Cartesian vector algebra, where a vector r , with three real components, is defined in terms of 

the basis vectors as 

(9.5) zkyjxi r , zyx ,, ℝ. 

Indeed, the kji ,,  component kqjqiq 321   of the quaternion q  (9.2) is termed the vector part. 

However, this is really where the similarity ends. For instance, in vector algebra the kji ,,  never 

multiply out according to the quaternion multiplication rules (9.1). Instead, in standard vector analysis, 

a product such as ij  is an outer product - a product of two vectors that gives a rank-two result, and this 

product is most definitely not equal to the basis vector k  as in (9.1b) - a vector being an object of rank 

one. 

Nevertheless, it is still very useful to split the quaternion q  into a real, scalar part 0q  and a 'vector' part 

q  defined as 

 

(9.6) kqjqiq 321 q , 

 

so that the complete quaternion is now written as 

 

(9.7) qq  0q . 

The vector part is also written in the standard, column vector form as 

(9.8) 


















3

2

1

q

q

q

q , 

and its transpose is simply the row vector 

(9.9)  321 qqq
T
q . 

The entire, four-element quaternion is then written as 

(9.10) 























3

2

1

0

q

q

q

q

q  or 















q
q

0q
,  TT q qq 0 . 

A quaternion may comprise just a vector part q  with the scalar term 0q   zero, i.e. 
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(9.11) 















q
q

0
, 00 q , 

and, likewise, a quaternion can comprise a real-only part, with the vector part simply the null, zero 

vector, i.e. 

(9.12) 









0

0q
q , 0q . 

This latter quaternion is just a real number 0q , and can be treated as such in all algebraic manipulation, 

just like a complex number with no imaginary (complex) component. 

In between these two extremes lies the possibility for a quaternion to represent a complex number by 

zeroing any two of the three vector components 321 ,, qqq , i.e. 

(9.13) 

iqq 10 q , 0, 32 qq  

jqq 20 q , 0, 31 qq  

kqq 30 q , 0, 21 qq . 

However, if using them as complex numbers, only one of the above three complex forms must be 

exclusively used. Otherwise, when mixing them, any algebraic expression generally becomes 

quaternionic, where two or more of 321 ,, qqq  are non-zero, and manipulation of them must adhere to 

the non-commutative multiplication rules of quaternions, not complex numbers, which do commute. 

One reason to treat quaternions as complex numbers is for the purposes of checking that any quaternion 

algebra reverts to the algebra of complex numbers when the quaternion is simplified to one (and only 

one) basis, i.e. one of kji ,,  but never two or more. Other than this, it would seem a futile use of 

quaternions if all they are used for is in their simplified, complex form. 

(9-3) Multiplication 

To see how quaternions multiply, a second quaternion r  is defined similar to q  for four, arbitrary real 

numbers 3210 ,,, rrrr  by 

(9.14) krjrirr 3210 r , 3210 ,,, rrrr ℝ,  

Multiplication is then simply a case of expanding the following bracketed product using the 

multiplication rules (9.1) 

(9.15)   kqjqiqqkrjrirr 32103210 rq . 

Partially expanding this in terms of scalar and vector terms gives 

(9.16)     0321321000 qkrjrirkqjqiqrqr rq  

  kqjqiqkrjrir 321321   
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and then expanding a bit further to give 

(9.17) kqrjqriqrkqrjqriqrqr 03020130201000 rq  

 kqjqiqir 3211   

 kqjqiqjr 3212   

 kqjqiqkr 3213  . 

The last three bracketed terms expand as follows: 

(9.18) 

  ikqrijqriqrkqjqiqir 3121
2

113211   

  jkqrjqrjiqrkqjqiqjr 32
2

22123212   

  2
3323133213 kqrkjqrkiqrkqjqiqkr  , 

and using the relations (9.1) these become 

(9.19) 

  jqrkqrqrkqjqiqir 3121113211   

  iqrqrkqrkqjqiqjr 3222123212   

  3323133213 qriqrjqrkqjqiqkr  . 

Finally, collating these terms into their scalar and vector components, the quaternion product is thus 

(9.20) )( 33221100 qrqrqrqr rq  

 iqrqrqrqr 23320110   

  jqrqrqrqr 31130220   

 kqrqrqrqr 12210330  . 

That was a rather long winded process that, fortunately, need not be repeated. Firstly, given readers of 

this book are assumed familiar with the inner (or dot) and vector cross product, then the quaternion 

product is evaluated more simply using the scalar/vector forms of the quaternions q  and r , where r  is 

written in vector form as for q  (9.7), i.e. 

(9.21) rr  0r , krjrir 321 r , 

with the column/row vector component 

(9.22) 


















3

2

1

r

r

r

r ,  321 rrr
T
r , 

and the full four-element quaternion written as 
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(9.23) 























3

2

1

0

r

r

r

r

r  or 









r
r

0r ,  TT r rr 0 . 

Using the vector definitions of q  (9.7) and r  (9.21), then the product rq  can also be written as 

follows, with the inner product ( qr  ) and cross product ( qr  ) terms expanded upon next: 

(9.24) qrrqqrrq  0000 qrqr . 

Note that in URMT the inner vector product qr   is often written in the vector multiplication form 

qr
T , i.e. 

(9.25) qrqr
T

  


















3

2

1

321

q

q

q

rrr )( 332211 qrqrqr  rqrq 
T

, 

 

so that the above product rq  (9.24) is re-written as 

 

(9.26) qrrqqrrq  0000 qrqr
T . 

 

This transpose form qr
T

 of the inner product qr   is preferred in URMT because, in matrix algebra, 

the product of a row vector with a column vector, in that order, automatically gives a scalar result. 

Furthermore, meaningful physical scalar quantities in URMT, e.g. observables such as energy, are 

invariably formed from such an inner product - witness the DCE (F10), which is given as the inner 

product between a zero, row eigenvector and its equivalent column vector. 

The vector cross product qr   is often written in the, hopefully familiar, matrix determinant form as 

(9.27) qr 

321

321

qqq

rrr

kji

    iqrqr 2332    jqrqr 3113  kqrqr 1221  . 

Later, when using the matrix representation form of a quaternion, concepts of inner and cross vector 

products can be dispensed with, and the multiplication is then just that of matrix multiplication. 

However, beforehand, there are still several standard quaternion concepts to be discussed. 

(9-4) Non-commutativity 

Quaternions do not, in general, commute because the vector cross product (9.27) is non-commutative, 

i.e. 

(9.28) qr  rq . 
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For later reference, this result also simply shows that the cross product of a vector with itself is zero 

since substituting q  for r  gives 

(9.29) qq 0 qqqq . 

 

Looking at the quaternion product rq  (9.26), then each of the terms on the right commutes barring the 

last, cross product. Starting with the scalar part 00qr , the inner product qr
T  and the scalar multiples, 

q0r  and r0q , all commute. That is, 0000 rqqr   since real numbers commute, rqqr
TT

  since the 

inner product commutes (to give a real, scalar result), and multiplication of a quaternion by a real 

number is also commutative (9.4). Thus, it can be deduced that the product qr  only differentiates itself 

from rq  by a change in sign of the cross product, as per (9.28), to give 

 

(9.30) qrrqqrqr  0000 qrqr
T . 

 

The difference in the two quaternion products rq  and qr  is therefore 

 

(9.31) qrqrrq  2  

















qr

0
2 , 

 

which has no real, scalar part involving 0r  and/or 0q . 

By setting 0q  and 0r  to zero in (9.30), and using qrqr 
T  (9.25), the product of two pure vector 

quaternions q  and  r  is 

(9.32) qrqrrq 



















qr

qr
, 

 

and likewise 

 

(9.33) qrqrqr 



















qr

qr
. 

These two results mean that the inner product and cross product can both be defined solely in terms of a 

quaternion vector product, i.e. 

(9.34)  rqqrqr 
2

1
 

(9.35)  rqqrqr 
2

1
. 

This result has similarities to the 'geometric product', which expands a product of two vectors as the 

sum of an inner and exterior (or wedge) product (I40). Without going into any more unnecessary detail 

(here), the reader is referred to [14] for more information. Lastly on this matter, although the similarity 
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between quaternions and geometric algebra is not required or pursued further herein, the connections 

between quaternions, URMT and geometric algebra is likely to reappear in the future. 

The square of a quaternion is easily evaluated by substituting q  for r  in (9.30) to give, in full, 

(9.36) qqqqqq  0
2
0

2 2qq
T . 

Since the last term on the right is zero by the vector cross product relation 0qq  (9.29), and using 

the inner product 
2

qqq  , (9.40) below, then the square of quaternion q  is 

(9.37) qqq 0

22
0

2 2qq  , 

 

alternatively written in block vector form as 

 

(9.38) 
















q

q
q

0

22
02

2q

q
. 

 

From this, the vector component of the quaternion squared, i.e. 2
q , is easily obtained by setting 00 q  

to give 

 

(9.39) 
22

qqqq   or 
















0

2
2 q

q . 

 

Thus 2
q  comprises only a real, scalar part with no vector component. 

Note that the inner product of the vector component q  with itself, i.e. qq   ( qq
T

 ), is the squared 

magnitude of q , and the negative of the quaternion vector product qq . The inner product is written in 

its myriad, notational forms as 

(9.40) qqqq
T

  


















3

2

1

321

q

q

q

qqq  2
3

2
2

2
1 qqq 

2
q , 

0 qqq . 

Caution. It is very easy to confuse these two products qq   and 2
q . However, the inner product is only 

a product between components, and takes no account of the multiplication rules (9.1) of the quaternion 

bases kji ,, , whereas 2
q  does take account of these rules, i.e., in full, 

(9.41)   kqjqiqkqjqiq 321321
2

q  2
3

2
2

2
1 qqq 

2
q  



9 Algebraic Fundamentals of Quaternions 

 

Quaternions and Angular Dynamics Notes. 

An edited extract from Unity Root Matrix Theory, Mathematical and Physical Advances Volume II  

R J Miller, Issue 1.04, 13th Oct. 2014 

 

8 

(9-5) Associativity and Distributivity 

Quaternion multiplication is associative, i.e. if q , r  and s  are three quaternions then 

(9.42) sqrrsq )()(  . 

 

Quaternion multiplication is also distributive over addition, i.e. 

 

(9.43) qsqrsrq  )(  

 

Of course, the order of execution must be observed, i.e. 

 

(9.44) sqrqqsrqsqrsrq  )()(  

 

In fact, quaternions obey all the usual algebraic properties of real numbers and complex numbers, 

including division (see later), barring commutativity. 

 

Readers may be familiar with one further type of number, namely Octonions, which have one real 

scalar and seven complex components, the latter forming the 'vector' part. These octonions are neither 

commutative nor associative. URMT has no current use for them and they are not used further - see [8] 

for some more information. 

(9-6) Miscellaneous Products 

The product qq  evaluates as follows, using qq  0q  (9.7) and the above result 
22

qq   (9.39): 

(9.45)   2

00 qqqqqq  qq  
















q

q

0

2

q
. 

The product qq  is identical to qq  since real numbers commute with quaternions, i.e. qq 00 qq   in the 

following: 

(9.46)   2

00 qqqqqq  qq qqqq  . 

(9-7) Quaternion Conjugate and Magnitude 

Just as per a complex number, a quaternion has a conjugate *
q  defined simply as 

(9.47) qq  0
* q 

















q

0q
, 

and the squared magnitude, also known as the norm (see note (9.53) below) or length of the quaternion, 

is also defined in the same way as per a complex number, i.e. the product of the quaternion and its 

conjugate: 
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(9.48) 
2

q qq
* . 

The product qq
*  is quickly evaluated by substituting for *

q  in place of r  in the product rq  (9.24) to 

give, using 0qq  (9.29), 

(9.49) qq
*

qq 2
0q , 

and using (9.40) then the square of the quaternion magnitude is thus just the sum of the squares of the 

components, as for a complex number, i.e. 

(9.50) qq
* 2

3
2
2

2
1

2
0

22
0

2
qqqqq  qq , 0, qq . 

Since the product qq
*  is the real scalar 

2
q , then the product *

qq  is the same as qq
* , i.e. 

(9.51)   2***
qqqqq  , 

and so a quaternion commutes with its conjugate, i.e. 

(9.52) *
qq qq

* . 

 

(9.53) 

Note that whilst the two terms 'norm' and 'magnitude' are used interchangeably when talking about 

quaternions, they are not the same quantities in URMT. Although the URMT magnitude definition (I7) 

is in agreement with common usage, the norm (I8) in URMT is not the same as the magnitude, and the 

norm of all eigenvectors (to non-zero eigenvalues) is, in fact, zero. Note too that the URMT magnitude 

is also zero for complex eigenvectors, which may have one or more complex elements. Such 

eigenvectors were first introduced in [3],10, and reviewed in Section (1-3) in the case of URM3. Also 

note that there is no over-arching reason why any of the quaternion components 3210 ,,, qqqq  

themselves cannot be complex numbers, but such 'complexification' is not required here. 

 

Since the components of a quaternion are all real numbers herein, at least one of which is non-zero 

(when embedded as URMT eigenvectors AVE I (1.1)), then the magnitude is always non-zero, which 

leads to a legitimate concept of division, exactly as per complex numbers (once again), and discussed 

in the next section. In fact, by convention, the magnitude q  is defined as positive, as for all magnitude 

quantities (1.2), and hence too q  is always less than zero by the same convention. This latter point is 

mentioned because such negative quantities are used in URMT's AVE I and II eigenvector treatment - 

see the eigenvector X  (1.25), where Xq ~ . 

Lastly on the subject of magnitude, in the application of quaternions to rotations, Sections (11) and 

(12), the quaternion magnitude is usually constrained to unity. However, there is no overriding reason 

for this in general quaternion algebra. 
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(9-8) The Conjugate of a Product 

The conjugate of the quaternion product rq , denoted by  *rq , expands as 

(9.54)   ***
rqrq  , 

which is similar to the matrix transpose rule   TTT
ABAB  . 

This is easily shown by taking the conjugate of the individual terms of the product rq  (9.24), i.e. 

(9.55)    *00
*

qrrq
T

qr   *0 qr  *0 rq  *qr  . 

Since the conjugate of a real scalar is the same scalar, with no sign reversal, then the conjugate of the 

scalar component of the quaternion is unchanged by conjugation, i.e. 

(9.56)  *00 qr
T

qr  qr
T

qr  00 , 

similarly, since 0
*
0 rr   and 0

*
0 qq  , then 

  *
0

*
0 qq rr  ,   *

0
*

0 rr qq  . 

Using the following conjugations: 

(9.57) qq 
* , rr 

* ,      rqqrqr 
* , 

then  *rq  becomes 

(9.58)   rqrqqrrq  0000
*

qrqr
T . 

 

The product **
rq  is evaluated as 

 

(9.59) **
rq )()())(( 0000 rqrqrq  qrrq

T , 

 

and since qrqrrqrq
TT

 ))((  and rqrq  )()(  then **
rq  is seen to be identical to  *rq . 

Using conjugate forms, it can easily be shown (to within a sign) that the magnitude of the product of 

two quaternions is the product of the magnitude of each quaternion, as for complex numbers, i.e. 

(9.60) qrrq  . 

From the squared magnitude definition (9.50), using (9.54) and associativity (9.42), then  
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(9.61) 
2

rq    rqrq
*   rqrq

**  qrrq
**  

qrq
2*  qqr

*2


22
qr . 

Taking the positive square root thus gives (9.60). Of course, the negative square root could also be 

taken, but magnitudes are defined here as zero or positive (9.40). In fact, URMT only uses non-zero, 

positive magnitudes, which means quaternion division (next) is always well-defined. 

(9-9) Quaternion division 

The reciprocal of a non-zero magnitude quaternion q  is obtained as per a complex reciprocal by 

multiplying top and bottom by the conjugate, thereby reducing the denominator to a real number, i.e. 

(9.62) 












 


2

0

*

*
1 1

q

q

qq

q

q
q

q
, *

qq
2

q  (9.51), 

qq  0
* q  (9.47), 0

2
q . 

Thus, the reciprocal of q  is just the conjugate quaternion divided by the squared magnitude. 

Armed with the reciprocal, it might then seem straightforward to divide a quaternion r  by a non-zero 

q  simply by multiplying r  by the reciprocal 1
q , i.e. 

 

(9.63) 1 rq
q

r
. 

 

However, note that this is multiplication of r  by 1
q  on the right. Since quaternion multiplication is 

not commutative, it should not be expected to give the same results as multiplying by the reciprocal on 

the left, i.e. 

 

(9.64) rqrq
11   . 

Thus, using the result 1
q  (9.62), the two possible divisions become 

(9.65) 1
rq  qrr

q
02

1
q  

 

(9.66) 
rq

1  rqr
q

02

1
q , 

and the difference in the two divisions is therefore 

 (9.67) rqrq
11    qrrq

q


2

1
. 
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Using the quaternion multiplication rule (9.24) for qq   and 00 q , the two numerator terms are 

(9.68) rqqrqrq  0r  

(9.69) qrqqrqr  0r . 

 

and the difference in the products rq  and qr  is therefore 

 

(9.70) qrrqqrrq  . 

Thus, since qr  = rq  , the difference (9.67) is given by 

(9.71)  
rqrq

11  rq
q


2

2
, 

which is a pure vector quaternion with no scalar part. 

 

This completes the basic algebraic properties of quaternions required herein. The next section shows 

how a matrix can be used to represent a quaternion. 
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10 The Quaternion Representation Matrix 

This section details the 4x4 matrix representation of a quaternion. Such a representation is very 

important to URMT, specifically the work within this book, because it is can be treated as per a 4x4 

skew-symmetric matrix using URMT's method of AVE I, Section (1), and is also fundamental to 

URMT's treatment of rotations in Sections (13) and (14) on spin and rigid body dynamics. 

(10-1) Definition 

A quaternion q  with a real, scalar component 0q  and vector component q , as first defined in in the 

previous Section, reproduced below, 
















q
q

0q
 (9.10), 



















3

2

1

q

q

q

q  (9.8), 

has an equivalent, 4x4, matrix representation, denoted by qQ  and defined as 

(10.1) 































0123

1032

2301

3210

qqqq

qqqq

qqqq

qqqq

qQ ~















q
q

0q
. 

If  r  is a second quaternion 

(10.2) 









r
r

0r , 


















3

2

1

r

r

r

r , 

then the quaternion product qr  is equivalent to the following matrix-vector product (linear 

transformation): 

(10.3)  rQqr q

















































3

2

1

0

0123

1032

2301

3210

r

r

r

r

qqqq

qqqq

qqqq

qqqq

. 

and hence matrix qQ  is a representation of the quaternion q  under multiplication. 

The representation matrix qQ  is nicer split into two matrix components, one for the scalar 0q  and 

another for the vector components 321 ,, qqq   as follows, where 4I  is the identity matrix: 
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(10.4) 































0

0

0

0

123

132

231

321

40

qqq

qqq

qqq

qqq

q IQq . 

This split form is better written in the more concise, block matrix form in terms of 0q  and vector q  as 

(10.5) 



















qq

q
IQq

T

q
0

40 , 

where the bottom right, 3x3 sub-matrix is the cross product, matrix operator ' q ' defined as 

(10.6) 
























0

0

0

12

13

23

qq

qq

qq

q , 

 

and discussed again later, sub-section (10-3). 

The block matrix form of qQ  (10.5) can also be written as follows: 

 (10.7) 



















qIq

q
Qq

30

0

q

q
T

, 

where it is clear that the left column is the quaternion q  (9.10). This fact is useful later when extracting 

the quaternion result from a product of two quaternion representation matrices, see (10.54) further 

below. 

By defining the two, 4x4 matrices on the right of (10.5) as 

 

(10.8) 400 IQ q 








0
~

0q
 

 

(10.9) 



















qq

q
Qq

T
0















q

0
~ , 

 

then the quaternion representation matrix is written as the matrix sum 

 

(10.10) qq QQQ  0 








0
~

0q

















q

0















q

0q
. 

Each matrix is a quaternion representation matrix in its own right, except that 0Q  is a representation of 

a scalar quaternion comprising only the real number 0q , whilst qQ  comprises only the vector q . 
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The matrix qQ  is skew-symmetric, i.e.  

(10.11) qq QQ T , 

written in block form as 

 

(10.12) 

















qq

q
Qq

T
T 0

. 

 

Comparing this with (10.9) it can be seen that T
qQ  is just the quaternion representation matrix for q , 

i.e. 

 

(10.13) qq QQ T
qQ 















 q

0
~ . 

 

Conversely, because 0Q  is symmetric then 

 

00 QQ T









0
~

0q
. 

Taking the transpose of qQ  (10.10) and using the above results for T
qQ  and T

0Q  gives 

(10.14) T
qQ  TT

qQQ0 
q

QQ0 qQQ 0 . 

However qQQ 0  is just the quaternion representation matrix for the quaternion q0q , which itself 

is just the conjugate quaternion *
q  (9.47), i.e. 

qQQ 0 













 q

0
~

q
= *

q  (9.47). 

So, finally, the transpose T
qQ  is thus the same as the conjugate *

qQ , i.e. 

(10.15) T
qQ qQQ 0

*
qQ , 

 















 q
Qq

0* ~
q

*
q . 

Before detailing qQ  further, it is noted that matrix qQ  (10.9) is identical in form to a URM4 skew 

matrix, i.e. S
4A  Skew form 2 (1.83), which also possesses an all-zero lead diagonal, and has therefore 
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already been studied in URMT under the subject of URM4 skew matrices, Section (1-4) - more details 

are supplied further below, see (10.21) onward. 

(10-2) Eigenvalues and Eigenvectors 

Although qQ  (10.9) is only half the story, i.e. the full quaternion matrix qQ  also involves 0Q , this 

latter matrix is nothing more than a scaled multiple of the identity matrix 4I  and, as such, the 

eigenvalues and eigenvectors of the representation matrix qQ  are easily determined from those of qQ . 

This is because, if a vector X  is an eigenvector of the matrix qQ , for eigenvalue  , then it is an 

eigenvector of qQ  for eigenvalue 0q . This is easily shown starting with the definition 

(10.16) XXQq  , 

and since 

(10.17) XXIXQ 0400 qq  , 

then, by the definition of qQ  (10.10) , XQq  is given by 

(10.18)  XQQXQ qq  0 XQXQ q 0 . 

Using (10.16) and (10.17) gives 

(10.19) XQXQ q0 XX  0q  X 0q , 

and thus it is seen that X  is an also eigenvector of the matrix qQ  for eigenvalue 0q , i.e. 

(10.20)  XXQq  0q . 

In other words, knowing the eigenvalues and eigenvectors of qQ  gives those of qQ . 

Summarising the above, whilst the quaternion representation matrix qQ  is not, in itself, a form of 

URMT A matrix, it is, by virtue of the non-zero diagonal component matrix 0Q , still simple enough 

that its eigenvalues and eigenvectors can be studied just by looking at the vector component matrix 

qQ . This matrix qQ  is a standard URM4, Skew form 2 matrix S
4A  (1.83), and therefore a solved 

problem by the method of AVE I, Section (1-4). Both matrices qQ  and S
4A  are reproduced below for 

comparison - with the eigenvector solution for qQ  given afterward. 

(10.21) 



















qq

q
Qq

T
0

~ 












 


S

T
S

3

4

0

ΔX

X
A  (1.83), Skew form 2, 
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with the following equivalences: 

(10.22) Xq ~ , 


















3

2

1

q

q

q

q , 


















z

y

x

X , xq ~1 , yq ~2 , zq ~3 , 

 

(10.23) ( q )~ S
3Δ , 

























0

0

0

12

13

23

qq

qq

qq

q , 
























0

0

0

3

xy

xz

yz
S

XΔ . 

 

Note that the Skew form 1 (1.81) of S
4A  is not used here. 

 

Using these equivalences, the full eigenvector solution for qQ  is given below in accordance with the 

URM4 Skew AVE solution, Section (1-4), (1.90) onward. Note that the URM3 eigenvectors i3X  

(eigenvectors of S
3Δ ), embedded in j4X , are given afterward, followed by their definitions. The matrix 

qQ  has four eigenvalues, only two of which are unique, i.e. qi  repeated, with four distinct 

eigenvectors, i4X  and j4X : 

 

(10.24) 

 
















q

q
X

i
i4 ,   ii i 44 XqXQq , qi  

 














i
j

3
4

0

X
X ,   jj i 44 XqXQq , qi  

 























2

3
1

3

q

q

i

r
i

r

q
i

q
q

qX  

 

0 qqq  (9.40) see note below 

 

  2
1

2
qr q   2

3
2
2 qq . 

 

Note that the magnitude here is strictly greater than zero, rather than greater than or equal to zero as in 

(9.40). This is because the URMT no singularity rule (I34) is applied and the vector q  is therefore 

never zero, i.e. at least one component of q  is non-zero: 

 

(10.25) 0q , )0,0,0(),,( 321 qqq , URMT no singularity (I34). 
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Thus, armed with the above eigenvector solution for qQ , for the four eigenvalues qq i  repeated, 

the eigenvalues of qQ  are given in accordance with the earlier derivation (10.20) as 

 

(10.26) qq iq  0  repeated. 

 

The eigenvectors also remain exactly the same as above (10.24), and using the above eigenvalues q , 

the eigenvector equations for the quaternion representation matrix qQ  are thus 

 

(10.27) 

  ii iq 404 )( XqXQq ,  

  jj iq 404 )( XqXQq . 

 

(10-3) Some algebraic aspects of the 3x3 skew, sub-matrix 

 

That the bottom right, 3x3 sub-matrix of qQ  (10.21) is the matrix representation of the cross product 

operator q  (10.6) can be seen by the action of q  on an arbitrary vector r , where the matrix vector 

product evaluates to 

 

(10.28)  rq 






































3

2

1

12

13

23

0

0

0

r

r

r

qq

qq

qq























2112

3113

3223

rqrq

rqrq

rqrq

, 

 

which is the same as the algebraic product given in determinant form - see qr   (9.27) and reverse the 

sign of all terms since qr  rq  (9.28). 

  

In URMT, the cross product matrix form q  is known as a skew 'annihilator', S
Δ  (I23), as it 

annihilates its own vector, i.e. 0qq  (9.29), expanded in full as 

 

(10.29) qq 0

0

0

0

3

2

1

12

13

23








































q

q

q

qq

qq

qq

. 

 

This annihilation also means that q  is a zero eigenvector (I18) of the matrix q . 

Returning to the matrix vector product rq  , it is also usefully re-written in the following form: 

(10.30)  rq 






















2112

3113

3223

rqrq

rqrq

rqrq























32112

31213

32231

0

0

0

qqrqr

qrqqr

qrqrq

, 

where the right-hand side can now be written as the juxtaposed, matrix-vector product form qr  , i.e. 
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





















32112

31213

32321

0

0

0

qqrqr

qrqqr

qrrqq










































3

2

1

12

13

23

0

0

0

q

q

q

rr

rr

rr

qr  . 

This too is nothing more than a statement of the cross product property rq  qr   (9.28) 

Orthogonality 

Moving away from q  and back to the complete, 4x4 representation matrix qQ  (10.1), this matrix has 

the property that the ith row is orthogonal to the jth row, when i and j are not equal. Likewise, the ith 

column is orthogonal to the jth column when i and j are not equal, the latter by virtue of the symmetry 

in qQ , disregarding the sign. This orthogonality is put to good use in URMT's treatment of rotations in 

three dimensions, Section (14), where columns two to four in qQ  form the three, zero eigenvectors in a 

URM5 representation - yes, that is a 5x5 representation and not 4x4, noting that URMT invariably adds 

an extra dimension when embedding an arbitrary vector (or a four-element quaternion). 

Algebraically, the orthogonality of the rows and columns in qQ  means that the product of qQ  with its 

transpose, i.e. qqQQ
T , is a diagonal matrix. In this quaternionic case it also has the same, non-zero 

value for every element on the lead diagonal, namely the square of the quaternion magnitude, i.e. 
2

q . 

This result can actually be deduced relatively simply using the earlier result T
qQ

*
qQ  (10.15) and 

2*
qqq   (9.48), since 

(10.31) qqQQ
T

4
22**

2~~ IqQqqqQQ
qqq  . 

However, as an algebraic workout, it is worth verifying this result longhand by using the definitions 

qQ  (10.10) and T
qQ

q
QQ T

0  (10.14) to give 

(10.32) 22
0 qqq QQQQ T . 

The 2
0Q  term is simply obtained from (10.8) as 

(10.33) 4
2
0

2
0 IQ q . 

and using the block definition of qQ  (10.9), then the matrix product 2
qQ  is 

(10.34) 2
qQ





































qq

q

qq

q
TT

00




















qqqq

q

T
0

0
2

, 

where the following relations have been used: 
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2
qqq 

T  by the inner product (9.40) 

0qq  by the cross product (9.29) 

  0qq
T  by orthogonality - see below. 

This last result is verified as follows, using the skew-symmetry of q , i.e.    qq
T , and 0qq : 

(10.35)  qq
T   TT

qq   0
T

qq . 

From the full definitions of q  (9.8) and q  (10.6), the terms 
T

qq  and qq  in the bottom right, 3x3 

sub-matrix of 2
qQ  are 

(10.36) T
qq  321

3

2

1

qqq

q

q

q






































2
32313

32
2
212

3121
2
1

qqqqq

qqqqq

qqqqq

 

(10.37) qq 2)(  q


























2
1

2
23231

23
2
1

2
321

1312
2
2

2
3

qqqqqq

qqqqqq

qqqqqq

. 

Upon evaluating the sum  qqqq
T

, all off-diagonal elements cancel to zero, leaving just a non-

zero lead diagonal with every element equal to 
2

q , as per the first element of 2
qQ , i.e. 

(10.38)  qqqq
T

3

2
Iq . 

The entire product 2
qQ  (10.34) is therefore 

(10.39) 4

22
IqQq  , 

and so, using 2
0Q  (10.33), then qqQQ

T  (10.32) evaluates to 

(10.40) 4

22
0 IqQQ qq 








 qT , 

and thus the lead diagonal comprises just the constant value 
22

0 qq . However, this is just the squared 

magnitude of the quaternion q , i.e. 

(10.41) 
222

0 qq q , 
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and so verifying (10.31). This result is expected because the transpose is also the quaternion conjugate, 

i.e. *
qq QQ T  (10.15), hence the product qq QQ

T
qqQQ

*  will give a real-valued result, i.e. a quaternion 

matrix representation with a zero quaternion vector component ( 0qQ ), and therefore a real-only, lead 

diagonal, actually equal to 
2

q , as above. 

This result also means that the transpose is identical to the inverse, barring a scale factor 
2

q . More 

precisely, the inverse 1
qQ  of qQ  is thus 

(10.42) 
2

1

q

Q
Q

q

q

T

 . 

If the squared magnitude is unity then the transpose of qQ  is identical to its inverse, i.e. 

(10.43) 1q T
qq QQ 1 . 

Such a matrix (with real elements), whose transpose is its inverse, is known as 'orthogonal'. A complex 

matrix, which is equal to its inverse when subject to both a transposition and a complex conjugation of 

all its elements, is known as 'unitary' - see Section (6-9). 

Unit magnitude quaternions are used all the time in the representation of rotations in three dimensions 

since they preserve the length of the vector under transformation. For example, for a rotation of angle 

  about a unit vector axis ê , the scalar and vector components are given by 

(10.44) )2/cos(0 q , eq ˆ)2/sin(   (11.3) 

and hence the magnitude is unity, i.e. 

(10.45) 
22

0 qq 1)2/(sin)2/(cos 22   . 

Lastly, the product 2
qQ , evaluated earlier (10.39), rearranges to the following quadratic polynomial 

(10.46) 04

22  IqQq , 

which implies, by the Cayley Hamilton Theorem [5], that two of the eigenvalues of qQ  are thus 

(10.47) qi . 

In fact, this complex conjugate pair is repeated, and the four eigenvalues of qQ  are qi  repeated, 

which is in agreement with the eigenvalue solution given earlier (10.24). 
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(10-4) The Quaternion Product as a Matrix Product 

The quaternion product qr  was stated earlier (10.3) as the following matrix-vector product: 

 rQqr q

















































3

2

1

0

0123

1032

2301

3210

r

r

r

r

qqqq

qqqq

qqqq

qqqq

 (10.3). 

However, this expression lacks some symmetry because the quaternion q  is given by a matrix, whereas 

the quaternion r  remains a vector. Although harmless, it would be nicer if both terms in the product 

were of the same type, i.e. a matrix. The downside of this is that the full matrix product is then overkill 

to evaluate the quaternion product since it calculates more terms than necessary. Nevertheless, it is 

useful to see how this works. 

In an identical way to q , represented by qQ , the quaternion r  is represented by the matrix rQ , 

defined in full as 

(10.48) 





























0213

2032

1301

3210

rrrr

rrrr

rrrr

rrrr

rQ , 

and in block form as 

(10.49) 



















rr

r
IQr

T

r
0

40 . 

The quaternion product qr  then becomes the matrix product 

(10.50) rqQQqr ~  

Expanding in block form, the full matrix product is thus 

(10.51) 

 400 IQQ rq rq 


















qq

q
T

r
0

0 


















rr

r
T

q
0

0 



































rr

r

qq

q TT
00

 

The vector component, matrix product on the far right evaluates as 

(10.52) 




































rr

r

qq

q TT
00



















rqrqrq

rqrq

T

TT

. 
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See (10.6) for the 3x3 matrix q , and replace q  with r  for r . 

The type of each term in this product is briefly given as follows: 

 

(10.53) 

rqrq 
T  : the inner (dot) product between q  and r  giving a scalar 

rq
T  : the product of row vector T

q  and matrix r  giving a row vector 

T
rq  : an outer product giving a 3x3 matrix 

 rq  : a matrix product of two, 3x3 matrices q  and r  giving a 3x3 matrix 

It is not actually necessary to calculate the full matrix product rqQQ  because the resulting matrix result 

itself should be a matrix representation of the resulting quaternion product. Thus, by comparing the 

result with the quaternion matrix representation (10.7), the top left element gives the scalar result, and 

the bottom left vector gives the vector result. Collecting only these two, left column terms therefore 

gives 

(10.54) rqQQ


















rqrq

rq

00

00

qr

rq
T

. 

Comparing this with the quaternion product qr  (9.30), using rqrq 
T

qrqr
T

  (9.25), confirms 

the above assumption that the left-hand column gives the quaternion product. 

Lastly, one good reason to use an all-matrix representation, instead of using the quaternion 

multiplication equation, is that no knowledge of quaternion multiplication rules are required, only the 

standard rules of matrix multiplication.  
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11 Quaternions and Single Axis Rotations 

(11-1) A quaternion as a rotation 

Quaternions are used to represent rotations in three dimensions, just like complex numbers can be used 

to represent planar rotations in one dimension, i.e. rotations about a single axis. This section is an 

overview of how this representation is achieved, starting with planar rotations and then moving on to 

rotations about three different axes. Lastly, and most important to URMT's usage of quaternions, this 

section examines angular rates as background to the two sections that follow on the subject of particle 

spin and rigid body motion. 

(11.1) Notation. The following three quaternions are used throughout this section: 

quaternion q : scalar 0q , vector q , i.e. Tq ),( 0 qq   

quaternion r : scalar 0r , vector r , i.e. Tr ),( 0 rrr   

quaternion u : scalar 0u , vector u , i.e. Tu ),( 0 uu   

Using the following definitions: 

(11.2) 

ê  : a unit vector aligned along the axis of rotation 

 

 : the angle of rotation about ê , positive clockwise when looking along the vector outward 

from the origin, or anticlockwise when looking toward the origin. 

 

then the quaternion q  is a representation of this rotation when 0q  and q  are given by 

 

(11.3) )2/cos(0 q , eq ˆ)2/sin(   

With these definitions, the quaternion representing the rotation, symbol q ,  is thus 

(11.4) eq ˆ)2/sin()2/cos(   , 

 

alternatively written in block vector form as 

 

(11.5) 









e
q

ˆ)2/sin(

)2/cos(




 . 

 

(11.6) 

The half angle 2/  is intentional, and is usually described (very loosely) in texts along the lines of "a 

single rotation in the real world requires two rotations in the quaternion world to get back to the 

starting point". Algebraically, when using quaternions to rotate a vector, this ‘two-rotations’ aspect 

manifests itself in the transformation (rotation) process as two multiplications, one by the quaternion 

and another by its conjugate, which causes the doubling of the half angle 2/  to give  ; see 
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*
aqqa   (11.12) below. Furthermore, the factor of two also arises naturally in URMT's eigenvector 

relation 02 XXA C  (14.14) – see Section (14-6) for its application to quaternion rates and rigid 

body rotations. Lastly on this half-angle subject, see [8] for a topological argument. 

 

The specifics of exactly how the rotation representation is achieved by q  is now given in more detail 

by studying how the components of a vector transform when rotated. 

 

(11-2) Transformation of Vector Components under a Rotation 

 

If a  denotes an arbitrary, Cartesian vector, 

 

(11.9) zkyjxi a , 

 

and written as a quaternion a , with a zero, real scalar part, 00 a , and non-zero vector part a , i.e. 

 

(11.10) aa  









a

0























z

y

x

0

, 

 

then the following product, where *
q  is the quaternion conjugate of q , i.e. 

 

(11.11) 











e
q

ˆ)2/sin(

)2/cos(*




 , 

 

gives the rotated vector a  as the quaternion a : 

 

(11.12) *
aqqa  












a

0
. 

 

This operation rotates the vector a  by a full angle   about the axis ê  to a new vector a . Because the 

vector is rotated, not the axes frame, this is known as an 'active' rotation; 'passive' rotations are 

considered soon – see Appendix (H2) for definitions. It is because the multiplication effectively 

involves q  twice - the second time by its conjugate *
q  - that the half-angle 2/  becomes the full 

angle  , as will be algebraically demonstrated shortly. 

 

The action of (11.12) can be seen in detail by considering the rotation of a vector, lying in the x - y  

plane, about the z  axis. The rotation axis is then simply the unit vector 

 

(11.13) 


















1

0

0

ˆ ke . 
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Substituting for ê  into (11.5) gives the quaternion q  and its conjugate *
q  as 

 

(11.14) 























)2/sin(

0

0

)2/cos(





q , 

























)2/sin(

0

0

)2/cos(

*





q . 

 

To make this example as simple as possible, the initial vector a  shall lie along the x  axis, with no y  or 

z  component, i.e.  

 

(11.15) 


















0

0

x

xia . 

 

For a positive rotation of angle  , using q  and its conjugate *
q  (11.14), but written longhand as 

 

(11.16) k)2/sin()2/cos(  q  

(11.17) k)2/sin()2/cos(*  q , 

 

then the rotated vector a  (as a quaternion a ) is calculated from the quaternion product (11.12), 

expanded in full as 

 

(11.18)  k)2/sin()2/cos(  a  xi  k)2/sin()2/cos(   . 

 

Multiplying out the last two bracketed terms, and using the quaternion product rule jik   (9.1d), 

gives 

 

(11.19)  k)2/sin()2/cos(  a  jxix )2/sin()2/cos(   , 

 

Further expanding this using jki   and ikj   (9.1c) then 

 

(11.20) a  )2/(sin)2/(cos 22  x jxi )2/sin()2/cos(2  . 

 

Lastly, using the two trigonometric identities 

 

(11.21)  22 sincos2cos  ,  sincos22sin  , 

 

then a  simplifies to just 

 

(11.22) jxix )sin()cos(  a . 

 

Thus, the resulting rotated vector is given in quaternion form as 
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(11.23) 























0

)sin(

)cos(

0





x

x
a , quaternion 

 

or in standard vector form as 

 

(11.24) 


















0

)sin(

)cos(





x

x

a , vector. 

 

The quaternion a  has no real scalar component, i.e. 00 a , and comprises the pure vector component 

a , which is the transformed vector as would be obtained using standard vector algebra to rotate the 

vector. Quaternion a  is thus written in block vector form as 

 

(11.25) 











a
a

0
. 

 

Doing the same for a vector lying along the y  axis, with no initial x  or z  component, i.e. 

 

(11.26) 


















0

0

yyja , 

 

then the transformed vector a  is obtained in exactly the same way by calculating the equivalent 

quaternion transformation (11.12) 

 

(11.27)  k)2/sin()2/cos(  a  yj  k)2/sin()2/cos(   , 

 

which results in the transformed vector 

 

(11.28) 


















0

)cos(

)sin(





y

y

a . 

Since the two vector forms of a , (11.24) and  (11.28), can be added together (see the following note), 

the combined result for the transformation of a vector a  lying in the x-y plane is 

(11.29) 
























































0

)cos(

)sin(

0

)sin(

)cos(

0









y

y

x

x

y

x

a . 
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Note that it was stated earlier that quaternions cannot be meaningfully added when representing angles. 

However, this is precisely what has just been done above. Nevertheless, this is permissible when the 

two separate rotations are about the same axis, as is the case here; see also sub-section (11-4) below. 

Finally then, the components yx,  of the planar vector a  transform to components x , y   of the rotated 

vector  a  (11.29), when a  is rotated about the z  axis, as follows: 

(11.30) 

 sincos yxx   

 cossin yxy   

and since any z  component of a 3D vector remains unchanged by a rotation about the z  axis then, of 

course, its transformed component z  is unchanged, i.e. 

(11.31) zz  . 

All three components zyx ,,  thus transform as follows, now written in matrix form as 

(11.32) 






























 
























z

y

x

z

y

x

100

0cossin

0sincos





. 

This result can also be obtained in a single step by calculating the full quaternion product 

(11.33)  k)2/sin()2/cos(  a  zkyjxi   k)2/sin()2/cos(   . 

 

The matrix in (11.32) is, unsurprisingly, the same as a rotation matrix, e.g. (H4), but with    for 

an active rotation of a vector about the z  axis. 

For a passive rotation (H2), all that is required is the inversion of the sign of the angle, i.e.    in 

the quaternion q  (11.5), which has the effect of reversing the sign of the vector term eq ˆ)2/sin(  

since, for any angle  ,  )sin(  )sin(  and  )cos(  )cos( . This then is just the same as taking the 

quaternion conjugate. In other words, an active rotation represented by quaternion q  is the same as a 

passive rotation with a sign reversal, i.e. q   *
q . In practice, in all quaternion representations and 

direction cosine matrices (for a single axis rotation), e.g. (H5), this means just replacing the )sin(  

terms with )sin(  wherever they occur. Note that ' ' here is an arbitrary angle, not necessarily the 

pitch angle. 

The above is a simple planar rotation example and, as such, the same result could be obtained using 

complex numbers. However, quaternions were explicitly developed for their 3D rotation properties, and 

it is only in the 3D case do they come into their own. Full 3D rotations are discussed in Section (14) 

but, beforehand, the intermediate step of compound rotations is now detailed. 
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(11-3) Compound Rotations 

Following on from the single rotation, represented by q  (11.5), if a second quaternion r  represents a 

rotation of angle   about an axis r , then the compound rotation of q
 
 followed by r  is equivalent to 

a single rotation through an angle   about an axis u , represented by quaternion u , where u  is given 

by the quaternion product 

 

(11.34)  qru  . 

 

This can be seen by rotating the vector a  (represented by quaternion a  (11.10)) in two stages. The first 

rotation of a  through angle   about axis q , represented by quaternion q , is as before (11.12), 

transforming quaternion a   to a , i.e. 

 
*
aqqa   (11.12) 

 

In a similar way, vector a  (quaternion a ) is then rotated through angle   about axis r  to give vector 

''a  (quaternion a  ), i.e. 

 

(11.35) *''  rara  . 

 

Substituting for a  from (11.12) into this expression gives 

 

(11.36) **''  raqqra  , 

 

and by the associativity of quaternion algebra (9.42) this can be grouped as 

 

(11.37)    **''  rqaqra  . 

Using the compound conjugation rule    ***
 qrrq    (9.54), then ''a  becomes 

(11.38)    *''  qraqra  . 

 

Lastly, using the definition (11.34) of quaternion u , then ''a  is written as the product 

 

(11.40) *'' auua  , 

 

and thus the compound rotation is equivalent to a single rotation represented by quaternion u . 

Notes 

The order of the multiplication is important since consecutive rotations do not generally commute, 

except when about the same, single axis, i.e. 

 

 rqqr  . 
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See Appendix (H) for more details on rotation ordering. 

The resultant rotation axis u  and angle   can be extracted from the quaternion product, both of which 

will be functions of the angles   and  , and the individual axis vectors q  and r . 

This compound rotation is a multiplicative, binary operation, and not additive, i.e. the addition of the 

two quaternions, e.g.  qr  , does not give a physically meaningful result in terms of rotations, even 

though addition is a perfectly valid quaternion operation. 

(11-4) Consecutive Rotations about the Same Axis 

The above compound rotation (11.34) is a general case, with the axis vectors q  and r  completely 

arbitrary. Before moving on to a full, 3D, compound transformation in the next section, i.e. three 

consecutive rotations, each about a different axis, it is worth simplifying the above generalisation for a 

brief look at consecutive rotations about the same axis, i.e. when q  and r , and subsequently u , are the 

same unit vector. In this case, performing a rotation through angle  , followed by a rotation through 

angle   about the same axis, is equivalent to the single rotation   given by the algebraic sum of the 

two angles, i.e. 

 

(11.41)   , 

 

and since rotations about the same axis commute then 

 

(11.42)   , 

 

and thus 

 

(11.43)  qru    urq . 

 

This expression has exactly the same form as the exponential relation,   eee , and is a reason 

why a complex-number representation can be used for planar (single axis) rotations, which use the 

complex representation ie  and ie  for the same rotations. 

 

A simple example is the case of performing the same angular rotation twice in succession, i.e. the angle 

  is the same as  , and the quaternions q  and r  are therefore also the same since both the angle 

and vector axis are now equal, i.e. 

 

(11.44)  rq  ,   . 

 

The resultant quaternion representing the repeated rotation is thus 

 

(11.45) 2
2  qu   
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Following from this it can be inferred that a finite rotation through angle   can also be composed of n  

consecutive rotations through the smaller angle n/ . Thus, the quaternion representation for a rotation 

through an angle   becomes the product of the quaternion representation for an angle n/ , repeated n  

times, i.e. 

(11.46)  nn/ qu  . 

Once again, this is no different to that of a complex number in the single axis rotation case, i.e. 

(11.47)    inni eez  /)( . 

In brief then, single axis rotations are commutative, as are the equivalent complex number 

representations - complex numbers commute. However, quaternion multiplication is not, in general, 

commutative, and neither do successive rotations about different axes commute. Thus, any algebra that 

represents rotations must have this non-commutative property. Matrix multiplication has this non-

commutative property, and is therefore one reason why matrices are used to represent rotations, notably 

as direction cosine matrices (DCMs), as detailed in Appendix (H), e.g. (H11). Perhaps then it is no 

surprise that matrices can also represent quaternions, and the matrix representation of a quaternion is 

actually of prime interest in URMT because URMT is heavily focused on matrices, their eigenvalues, 

eigenvectors and the invariants that arise from their inner product relations, Appendix (F). These 

aspects are discussed at length in application to particle spin and general rigid body dynamics, Sections 

(13) and (14) respectively. However, for now, the study moves on to the representation of three 

dimensional rotations using quaternions. 
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12 Quaternions and Three Axis Rotations 

(12-1) Pre-requisite 

Before starting this section, readers are advised to peruse the angular dynamics primer, Appendix (H), 

particularly with regard to the nomenclature and conventions used in rotations. 

(12-2) Compound Transformations and 3D Rotations 

From the previous section, the quaternion q  used to represent a rotation of angle   about a single 

axis ê  is given by  

eq ˆ)2/sin()2/cos(    (11.4), 

alternatively written in block vector form as 











e
q

ˆ)2/sin(

)2/cos(




  (11.5). 

Using the aerospace convention given in Appendix (H) then, for a passive rotation of the axes, the 

compound rotation to go from space to body axes comprises: 

1) a yaw through angle   about the z  axis (unit vector k ), represented by quaternion q  

(12.1) k)2/sin()2/cos(  q , yaw, 

2) followed by a pitch through angle   about the new y  axis (unit vector j ), represented by 

quaternion q  

(12.2) j)2/sin()2/cos(  q , pitch, 

3) followed by a roll through angle   about the new x  axis (unit vector i ), represented by quaternion 

q  

(12.3) i)2/sin()2/cos(  q , roll. 

Multiplying these three quaternions in the appropriate order gives the quaternion representation ' q ' 

of the passive, compound transformation as 

(12.4)  qqqq  . 

Note that the quaternion multiplication ordering for this passive transformation is reversed from that of 

the active, compound transformation (11.34). 

Writing the quaternion q  in the usual way, as a four-element column vector comprising the four 

components ),,,( 3210 qqqq , i.e. 
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(12.5) q























3

2

1

0

q

q

q

q

q , 

then the quaternion product, in terms of the components, is 

(12.6) 

)2/sin()2/sin()2/sin()2/cos()2/cos()2/cos(0  q  

)2/cos()2/sin()2/sin()2/sin()2/cos()2/cos(1  q  

)2/sin()2/cos()2/sin()2/cos()2/sin()2/cos(2  q  

)2/sin()2/sin()2/cos()2/cos()2/cos()2/sin(3  q . 

The Euler angles ),,(   can be obtained from the quaternion components by 

(12.7) 

 
2
3

2
2

2
1

2
0

10322
)tan(

qqqq

qqqq




  

 31202)sin( qqqq   

 
2
3

2
2

2
1

2
0

30212
)tan(

qqqq

qqqq




 . 

Using the unity-magnitude relation 

(12.8) 12
3

2
2

2
1

2
0  qqqq , 

then these equations can also be written as 

(12.9) 

 
2
2

2
1

1032

2/1
)tan(

qq

qqqq




 . 

 31202)sin( qqqq   

 
2
3

2
2

3021

2/1
)tan(

qq

qqqq




  

Note that these equations, (12.7) and (12.9), are not immune to the 90 deg pitch angle singularity that 

occurs when the denominator in the roll and yaw expressions is zero - see also (H29) and (H54) in 

Appendix (H). However, also note that, whilst quaternions resolve the yaw-rate issue discussed in 

Appendix (H), they cannot resolve this singularity issue when converting from quaternions to Eulers at 

exactly 90 deg pitch. 
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Before proceeding, a quick recap on notation as first given Section (9). The quaternion q  comprises a 

scalar part 0q  and a vector part q , the combination written as 

 

qq  0q  (9.7). 

The vector part is often written in the familiar, Cartesian 'i,j,k' vector form as 

kqjqiq 321 q  (9.6), 

but as used herein it is generally written as a three-element column vector, i.e. 



















3

2

1

q

q

q

q  (9.8), 

Using this notation, the quaternion q  is then written in the block vector form as 
















q
q

0q
 (9.10). 

For rotations, the magnitude q  of the quaternion q  is always unity, which ensures that it preserves the 

length of vectors under transformation (rotation). However, for general quaternions, the magnitude is 

arbitrary and, as such, q  will usually be used in place of unity throughout, although the reader can 

safely assume that 1q  in the context of rotations, unless stated otherwise. 

(12-3) How the components of an arbitrary vector change under rotation of the axes. 

If a  denotes an arbitrary, Cartesian vector, 

 

zkyjxi a  (11.9) 

and written as a quaternion a , with a zero, real scalar part, 00 a , and vector part a , i.e. 

aa  









a

0























z

y

x

0

 (11.10), 

then the following product, where  *q  is the quaternion conjugate of q  (12.5), gives the 

components of the vector a  due to the compound rotation ),,(   of the axes (passive rotation): 

(12.11)    aqqa
*

 











a

0
. 
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(12-4) Quaternion Rates 

From the theory of quaternions [15], if q  denotes a four-element quaternion vector, and q  its rate, i.e. 

(12.13) 























3

2

1

0

q

q

q

q

q , 























3

2

1

0

/

q

q

q

q

dtd









 qq , 

then the quaternion rate vector q  can be expressed in terms of q  using the following 4x4 body rate 

matrix W , whose elements comprise solely of the body rates ),,( rqp  (H43), as follows: 

(12.14) 































0

0

0

0

pqr

prq

qrp

rqp

W , quaternion rate matrix. 

p  : roll rate about the body fixed x axis 

q  : pitch rate about the body fixed y axis 

r  : yaw rate about the body fixed z axis. 

The corresponding quaternion rate equation is given by 

(12.15) q
W

q
2

 . 

The axes rotations are actually done in the yaw, pitch, roll order (yaw first about z , roll last about x ) 

going from space axes to body-fixed axes. Body fixed axes rotate with the body, whereas space axes 

are inertial axes that do not rotate, and may only have a constant linear velocity, i.e. they do not 

accelerate. It is usual to set the origin coincident with the space axis, or at least an origin with which the 

space axes are at rest so that the space axes have no linear motion, i.e. zero velocity. For rotational 

problems, as detailed herein, both the space and body axes have coincident origins for all time, so there 

is no relative, linear motion between them. 

This (12.15) is how the quaternion rates are often calculated in texts on the practical application of 

quaternions to angular dynamics, where the usage of symbols p , q  and r  in matrix W  is popular, 

notably in aerospace. 

Note that the body rates p , q  and r  are not the same as the URMT dynamical variables, P , Q  and R  

(A1b), although the notation is not unrelated as it was realised early in the development of URM3 [1] 

that the matrix and its velocity (angular velocity) properties were similar - see Section (6-4)  and (6.44). 

All three body rates body rates p , q  and r  are better written (for further mathematical purposes) as 

the vector components 1 , 2  and 3  of a body rate vector ω  

(12.16) 
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p 1 , q  2 , r 3  (6.44) 



















3

2

1







ω  


















r

q

p

, body rate vector. 

Usage of vector components 1 , 2  and 3  will shortly be seen to demystify W , which is now 

equivalently written as 

(12.17) 































0

0

0

0

123

132

231

321









W  = 


















ωω

ω
T0

 (12.28). 

Writing the rate equation (12.15) using this form of W  gives 

(12.18) 







































































3

2

1

0

123

132

231

321

3

2

1

0

0

0

0

0

2

1

q

q

q

q

q

q

q

q

















. 

By expanding this transformation out in full as four linear equations, it is then easily verified that it can 

also be written in the following, reversed form, i.e. where the matrix now contains the quaternion 

components, and the body rates form the vector, i.e. 

(12.19) 







































































3

2

1

0123

1032

2301

3210

3

2

1

0 0

2

1







qqqq

qqqq

qqqq

qqqq

q

q

q

q









. 

By reference back to Section (10), when written this way the matrix is seen to be a true quaternion 

representation matrix, denoted by qQ  (10.1), reproduced below. 































0123

1032

2301

3210

qqqq

qqqq

qqqq

qqqq

qQ  (10.1) 

Such a matrix is nicer written in the more concise, block matrix form in terms of the quaternion scalar 

0q  and vector q  components as follows, reproduced from Section (10): 

(12.20) 



















qq

q
IQq

T

q
0

40  (10.5), 
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where the 3x3, bottom right sub-matrix ' q ' is the cross product representation matrix (10.6). 

There are two, 4x4 matrices on the right of (12.20) defined as 0Q  and qQ  

400 IQ q  (10.8), 



















qq

q
Qq

T
0

 (10.9). 

Together they sum to a quaternion representation of the complete quaternion, scalar 0q  and vector 

component q : 

qq QQQ  0  (10.10). 

By defining the body rate quaternion ωq  in terms of the body rate vector ω , with a zero scalar part, i.e. 

(12.21) 








ω

qω
0

, 00 q , 

then the rate equation (12.15) is now written as the quaternion matrix/vector product 

(12.22) ω

q
q

Q
q

2
 . 

Using qQ  (12.20), this rate equation is expanded in a vector form as 

(12.23) ωqωqωq 
T

q0 , 

where ωq
T  is the inner vector product, i.e. ωqωq 

T , and forms the scalar part of the quaternion rate 

q , also written as 

(12.24) 















q
q




 0q

 













ωqω

ωq

0q
. 

Returning to equation (12.19), this shows that the quaternion represented by qQ  performs a linear 

transformation on the body rate ω  converting it to its physically equivalent quaternion rate. The point 

here being that the initial and final quaternion have the same physical units of frequency, with the 

quaternion representation matrix being dimensionless. The physical units of the quantities given so far 

are as follows: 

(12.25) 

1)( Tunits ω , frequency 

1)( Tunits W , frequency 
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1)( Tunit q , frequency. 

)( qQunits  none, dimensionless 

)( ωqunit  none, dimensionless. 

In contrast to (12.19), the first form of the rate equation qWq )2/(   (12.15), given in terms of the 

body rate matrix W, physically transforms the dimensionless quaternion to its equivalent rate. Such an 

action is equivalent to a derivative operation, and thus the matrix 2/W  performs the equivalent action 

to a derivative operator. This is now the realm of URMT because URMT also has a matrix A  that is 

equivalent to a derivative operator (6.2). This calculus nature is most important to URMT when 

discussing rigid body rotations in Section (14). 

By comparing both matrix forms W (12.17) and qQ  (10.1), it is clear from the vector indices that they 

are very similar barring the fact that W has an all-zero lead-diagonal, whereas qQ  has a lead diagonal 

which is just 0Q  (10.8). Thus the matrix W is really just a matrix representation, denoted by ωQ  

(below), of the body rate quaternion ωq  (12.21), itself the quaternion form of the body rate vector ω  

(which has no scalar component, i.e. 00  ), and so the rate equation (12.22) can equally be written as 

the quaternion product 

(12.26) q
Q

q ω

2
 . 

The matrices W  and ωQ  thus being one and the same thing 

(12.27) W ωQ . 

Just like qQ  (10.5),  ωQ  (or W ) can also be written in block matrix form as 

(12.28) 



















ωω

ω
Qω

T0
. 

where the 3x3, bottom right sub-matrix ' ω ' is the cross product representation matrix 

(12.29) 
























0

0

0

12

13

23







ω . 

Note that the minus prefix on ω  in ωQ  is intentional, as verified next. 

Expanding out q  (12.26) in a vector form, using ωQ  (12.28), just like (12.23), gives 

(12.30) qωqωωq  Tq0 , 
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and since ωq qω  and ωqqωωq  TT , then the two expressions for the rate, (12.23) and 

(12.30), are identical, as expected. 

Given both ωQ  ( W ) and qQ  are just quaternion representation matrices, their eigenvalues and 

eigenvectors are a solved problem in URMT since they are both effectively a URM3 embedding of the 

URM3 Skew matrix ω  (12.29) into URM4. See AVE I, URM4 Skew (1-4), in particular the Skew 

form 2, A matrix (1.83). However, it is not so much the non-zero eigenvectors or eigenvalues of ω  

that are of importance in the URMT formulation of angular dynamics and spin (next), but rather the 

fact that the quaternion rates can be obtained from either URMT's zero eigenvectors (I18) or its 

'derivative operator' matrix A  (6.2). These two aspects are explored in the next two sections on 

particle spin and rigid body dynamics, see particularly Sections (14-5) and (14-6) on zero eigenvectors 

and calculus using A . 

 



 

Quaternions and Angular Dynamics Notes. 

An edited extract from Unity Root Matrix Theory, Mathematical and Physical Advances Volume II  
R J Miller, Issue 1.04, 13th Oct. 2014 

 

41 

Appendices 
 





Appendix (H) Rotations and Angular Dynamics 

Quaternions and Angular Dynamics Notes. 

An edited extract from Unity Root Matrix Theory, Mathematical and Physical Advances Volume II  

R J Miller, Issue 1.04, 13th Oct. 2014 

 

43 

 

24 Appendix (H) Rotations and Angular Dynamics 

The content of this Appendix is relatively terse and serves merely as background material for the 

sections on spin and rigid body dynamics in the main text, Sections (13) and (14) respectively; see [13] 

for a full account of angular dynamics. 

(H-1) Axes and Rotations 

To discuss the angular dynamics of a rigid body, two sets of axes are required: 1) an inertial set fixed in 

space (or 'reference' or 'inertial’ axes); 2) a set fixed in the rotating body, also known as 'body fixed 

axes'. 

Both axes are orthogonal, right-handed sets. 

The space axes are considered static and do not rotate, i.e. they are an inertial frame - they can move 

with constant velocity, just not rotate or accelerate. 

Body axes are fixed in the body and rotate with it, i.e. they rotate with respect to space axes.  

The body fixed axes are assumed aligned with the principal axes of inertia, i.e. the inertia tensor (or 

matrix) is entirely diagonal. If it has non-zero, off-diagonal elements then it can always be converted to 

diagonal form by a 'similarity transformation' [5]. 

The body x axis usually points forward along the line of longitudinal symmetry, e.g. for a cylinder this 

is along the axis of rotational symmetry - a rotation of the cylinder about this axis is known as a roll. 

For an aircraft, the x axis is along the body tube, pointing forward from the tail to the nose-cone, hence 

the aircraft rolls about this axis. Finally, for a spinning top, this is the axis pointing upward about which 

it spins. 

(H-2) Transformation Matrices 

The components of a vector aX , in an axes frame ' a ', are related to those of a vector bX , in an axes 

frame ' b ', by a linear (matrix) transformation abR , i.e. 

(H1) aabb XRX  . 

The subscript 'ab' on abR  denotes a transformation from a to b. Some texts do this in reverse, i.e. 'ba' 

means a to b, but this is not the case herein. 

The b  axes  are derived from a  purely by means of rotations about one or more axes, both frames 

having a coincident origin, thus excluding translations (linear displacements) in the above 

transformation. 

(H2) 

Rotations can either be 'passive' or 'active'. Passive rotations are those just described, i.e. the axes are 

rotated and the vector stays fixed in space. Conversely, active rotations are those where the vector is 

rotated about some axis, and the axes themselves remain fixed in space. Only the former, passive 
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rotations are of interest herein, albeit going between the two types is little more than a sign change in 

the transformation (rotation angle) - see further, sub-section (H-4). 

Positive rotations are counter clockwise when viewed looking along the rotation axis towards the 

origin, or clockwise when looking outward from the origin along the axis. 

Consecutive rotations about different axes are not commutative, i.e. a rotation through angle   about 

the y  axis, followed by a rotation through angle   about the z  axis does not give the same result as 

first rotating by   about the z  axis followed by a rotation   about the y  axis. The order in which 

rotations are performed is therefore important, and there are at least two standards of ordering 

convention in common use. However, this text exclusively uses the aerospace convention 'Z-Y-X', as 

opposed to 'Z-X-Z', the latter more commonly given in theoretical texts [13]. 

(H-3) The Space-to-Body Axes Transformation 

The general, 3D rotation comprises the following three individual rotations, in the order given, starting 

with the body and space axes coincident: 

(H3) 

(H3a) A yaw rotation through angle   about the z  space axis 

(H3b) A pitch rotation through angle   about the new y axis 

(H3c) A roll rotation through angle    about the new x axis 

For each rotation, the matrix transformation R , that transforms the components of a vector in the space 

frame into components of the vector in the rotated frame, is given as follows: 

1) Rotation yaw   about the z  space axis 

(H4) 


















100

0cossin

0sincos

)( 



zR , passive 

2) Pitch   about the new y axis, following the yaw rotation, 

(H5) 














 









cos0sin

010

sin0cos

)(yR , passive 

3) Roll   about the new x axis, following the pitch rotation, 

(H6) 
























cossin0

sincos0

001

)(xR , passive 
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A rotation matrix is orthogonal, i.e. its inverse is its transpose (or vice-versa) 

(H7) T
RR 1 . 

Each individual matrix also satisfies the following: 

(H8) },,{),(   RR
T , 

so that the inverse of each matrix, using (H7), is thus also the same matrix with the sign of the angle 

inverted. Note that this is not the case when in combination (next), where both the sign of each angle 

and the order of consecutive transformations has to be reversed, which gives the equivalent of the 

transpose; see (H17) further below. 

The complete 3-axis transformation is given by the following matrix product, strictly in the order 

shown: 

(H9) ),,( R = )(xR )(yR )(zR . 

The combined matrix ),,( R  is known as the space to body transformation matrix, denoted by 

symbol sbR : 

(H10) sbR  = space-to-body transformation matrix. 

Multiplying out the three individual matrices in (H9) gives sbR  as 

(H11) 






























coscoscossinsinsincossinsincossincos

cossincoscossinsinsinsincoscossinsin

sinsincoscoscos

sbR  

(H12) Rotation matrices such as sbR  are also known as direction cosine matrices or 'DCM's for short. 

(H13) The three angles  ,   and  , roll, pitch and yaw in that order, are known as Euler angles, and 

uniquely specify the bodies orientation. 

Euler angles are often given as the following ordered triple, which is the roll, pitch, yaw convention (an 

explanation follows) 

(H14) ),,(   ~ ),,( yawpitchroll . 

The triple ),,(   is given in this ordered form since the angles roll, pitch and yaw are rotations about 

the x, y and z axis respectively, i.e. the ordering is in accordance with the ordered triple ),,( zyx . But be 

careful because this is not the order in which the rotations from space to body proceed, which is yaw 

(z) followed by pitch (y) followed by roll (x), as per (H3). 
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Whilst the triple ),,(   may appear as a vector quantity, it is most definitely not a vector. It cannot be 

added to another similar triple of Euler angles to give a physically meaningful result. Such a sum might 

be thought of when considering the attitude (H16) of a body with Euler angles ),,(  , mounted on a 

platform that is, itself, orientated with Euler angles ),,(    with respect to an inertial, space frame. 

That is, the sum ),,(    does not give the correct Euler angles of the body with respect to 

the space frame. The correct angles can be obtained by determining the matrix for the compound 

transformation from space-to-platform-to-body, and then using equations (H15) (below) to determine 

the Euler angles. However, they will not, in general, equal the sum of the two sets of Euler angles, 

except under very special conditions, most notably when all frames are rotated about a single axis only. 

This summation of angles is also valid (approximately anyhow) for small rotation angles, such rotations 

also then commute - see note (H41). The case of single axis rotations is actually used a great deal in 

this book's work on quaternions because it is a simple, illustrative case and, most importantly, is 

sufficient to deal with the concept of particle spin in URMT. 

The Euler angles can be obtained from the elements of sbR  as follows, where ),( jisbR  is the element 

in the ith row and jth column: 

(H15) 

))3,3(/)3,2((tan 1
sbsb RR

  

))3,1((sin 1
sbR   

))1,1(/)2,1((tan 1
sbsb RR

  

(H16) 

Note that the term body 'attitude' is often thought of as the pointing angle of the x-axis in space, which 

is defined by just the two angles, pitch   and yaw  . The roll angle   doesn't affect the pointing, but 

simply the orientation of the body about what is usually its axis of rotational symmetry. Thus, if the 

body points in a fixed direction with respect to space axes, then its pitch and yaw angles remain 

constant, and the x-axis points in the same fixed direction. That said, such a two-angle definition of 

attitude is not assumed herein. 

(H-4) The Body-to-Space Axes Transformation 

To perform the reverse transformation, from body to space axes, the three rotations are performed in 

the reverse order with the sign of each of the angles inverted: 

(H17) 

Roll   (minus phi) about the body x axis 

Pitch   (minus theta) about the new body y axis 

Yaw   (minus psi) about the new body z  axis. 

The compound body-to-space transformation is thus given by 

(H18) bsR = )( zR )( yR )( xR , 
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(H19) bsR  = body-to-space transformation matrix 

and this expands in full as 

(H20)






























coscoscossinsin

cossinsinsincoscoscossinsinsinsincos

sinsincossincossincoscossinsincoscos

bsR  

Thus the components of a vector r , given in body axes, are transformed to components in space axes, 

vector r , by 

(H21) rRr  bs . 

Note that bsR  is just the transpose of sbR  

(H22) T
sbbs RR  . 

Furthermore, since rotating from space to body axes and then back again through the same angles 

(albeit reversed) will return the same vector components as prior to the axes rotation, then the resulting 

compound transformation should be just the identity transformation, i.e. the 3x3 identity matrix 3I  as 

given by 

(H23) rRRrRr sbbsbs  3IRR  sbbs . 

Combining this result with (H22) then 

(H24) 3IRRRR  sb
T
sbsbbs

1 sb
T
sb RR , 

confirming that sbR  is orthogonal in accordance with (H7). 

Because bsR  is just the transpose of sbR  then the Euler angles can be obtained using (H15) above, but 

with transposed elements, i.e. 

(H25) 

))3,3(/)2,3((tan 1
bsbs RR

  

))1,3((sin 1
bsR   

))1,1(/)1,2((tan 1
bsbs RR

 . 

There is, however, another more useful way to obtain the pitch and yaw from the vector components, in 

space axes, of a unit vector lying along the x-axis of the body, i.e. a vector r   defined in body axes as 
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(H26) 


















0

0

1

r , 1x , 0y , 0z . 

The components ),,( zyx  of r  in space axes are obtained from r   as follows, using bsR  (H20), where 

the second and third column of bsR  are immaterial in the transformation, given y   and z  are both 

zero, hence blanked (hyphenated) out: 

(H27) 

























































0

0

1

sin

sincos

coscos







z

y

x

r . 

Expanding this transformation in terms of the components ),,( zyx  of the unit vector, in space axes, 

gives 

(H28) 

 coscosx  

 sincosy  

sinz , 

and from these then 

(H29) 

)(sin 1 z   

)/(tan 1 xy . 

Note that this does not give the roll angle  , merely the pointing direction of the x-axis. Albeit often 

the roll angle is immaterial and it is only the pitch and yaw angles that are required since these are 

sufficient to describe the pointing direction of the x axis. 

The solution for the yaw   highlights a problem if the pitch angle is 90 deg (or an odd integer multiple 

2/)12( n  radians), because then both x and y are zero and y/x is therefore indefinite. This is a 

notorious problem that arises because the roll and yaw are effectively ambiguous. Of course, having a 

pitch angle of exactly 90 deg is actually highly improbable in the real world of dynamics. Nevertheless, 

even when the pitch angle is close to 90 deg, there is another problem with the yaw rate, which hasn't 

yet been discussed. In this latter case, quaternions are invariably used instead of Euler angles for all 

intermediate calculations, and do not suffer from this problem. This issue with the yaw rate is discussed 

further below. 

The above two expressions for pitch and yaw also give a simple geometric picture of the pointing 

direction. With z vertical, the pitch is actually the angle between the body x-axis and its projection on 

the x-y space plane, and, since it is the negative of z (H29), this means the angle is positive when the x-

axis points below the x-y plane, in the opposite direction to positive z. However, in geodetic (Earth) 
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applications, the z axis often points downward towards the geodetic centre of the earth (not quite the 

same as the geocentric centre, but never mind), so it is the negative z axis that points skyward, and 

hence a positive pitch is then the angle of the x axis above the x-y horizontal plane. In either case, 

positive z up or down, if the pitch is zero then the body x-axis lies in the x-y plane. The pitch angle is 

also sometimes referred to as elevation, albeit it may be the negative of the elevation depending on 

terminology and convention. 

The yaw angle is simply the angle of how far the x-axis is rotated toward the y-axis before any pitch 

and roll rotations, i.e. (H3a) only. In geodetic axes, with z pointing down, then x is defined to point 

north, and y points east to complete a right-handed axes set. The yaw angle is then simply the angle 

clockwise from north, i.e. its 'northing'. The yaw angle is often referred to as azimuth but, unlike pitch 

and elevation, usage of yaw and azimuth is not usually ambiguous. Nevertheless, caution is urged in all 

definitions, so always check the convention in use. 

(H-5) Small Angle Approximations 

Using the following, first order, small angle approximations for the trigonometric functions: 

(H30) 1)cos(  ,  )sin( , 1 , },,{   

then the small angle approximations of the rotation matrices (H4), (H5) and (H6) are 

(H31) 




















10

10

001

)(



xR , 1 , 

(H32) 














 



10

010

01

)(





yR , 1 , 

(H33) 


















100

01

01

)( 



zR , 1 . 

Each of these can actually be written in the following form in terms of ' J ' matrices: 

(H35) xx JIR   3)( , 




















010

100

000

xJ  

(H36) yy JIR   3)( , 














 



001

000

100

yJ  

(H37) zz JIR   3)( , 


















000

001

010

zJ . 
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A small angle rotation of the axes through all three angles, in accordance with the rotation ordering in 

(H3), is thus given by the product: 

(H38)    zyxsb JIJIJIR   333 , 

and to first order this is just the same as the sum 

(H39)  zyxsb JJJIR   3  

which in full is 

(H40) 
























1

1

1







sbR . 

This approximation of sbR  could, of course, also be obtained by applying the small angle 

approximations (H30) directly to matrix sbR  (H11). 

(H41) 

Notice that the sum (H39) does not depend upon the order the multiplications are performed in (H38), 

hence rotations are commutative to first order in the small angles. 

(H-6) Euler Angle Rates and Body Rates 

The angular rotation rate of a body is specified by a three-element vector ω  whose components are the 

instantaneous angular rotation rates about each of the three, orthogonal, body-fixed axes 

 

(H42) ω

















z

y

x

























3

2

1







. 

Commonly, especially in aerospace, these three components zyx  ,,  (or 321 ,,  ) are also denoted 

by the symbols qp,  and r , i.e. 

(H43) 

 px 1, body roll rate about the x axis 

 qy 2, body pitch rate about the y axis 

 rz 3, body yaw rate about the z axis 



















r

q

p

ω . 
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Notes 

The symbol p  does not correspond to the p in pitch, neither does symbol r  correspond to the r in roll. 

Although confusing, the reason is simply that the ordered triple ),,( rqp  is alphabetically ordered and 

corresponds with the axes ordering ),,( zyx , which is roll-pitch-yaw. 

The components zyx  ,,  are used instead of 321 ,,   from here onward, simply to remove 

redundancy - both forms are identical (H42). 

The body rates qp,  and r  are not the same as the URMT dynamical variables, P , Q  and R , although 

the notation is not unrelated, as it was realised early in the development of URM3 [1] that the matrix 

and its velocity (angular velocity) properties were not dissimilar. Neither are the body rates generally 

the same as the Euler angle rates  , , , the only exception being when the rotation is about a single 

axis. 

(H44) 

  px  

  qy  

  rz  

In fact, ω  is related to the Euler angle rates  , ,  by the following matrix transformation equations: 

(H45) 



















0

0



ω








































 0

0

)()(

0

0

)( yxx RRR . 

Substituting for )(xR  (H6) and )(yR  (H5) gives the components of ω  as 

(H46) 

 sin  px  

 sincoscos   qy  

 coscossin   rz , 

Alternatively, in matrix form, 

(H47) 






























































































coscossin0

sincoscos0

sin01

r

q

p

z

y

x

. 
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To obtain the Euler rates in terms of the body rates, it is simplest to pre-multiply ω  (H45) by the 

inverse of )(xR , which is equivalent to 'unrolling' the axes, i.e. a rotation of   about the body fixed 

x axis (not the original space fixed x axis) as in 

(H48) )()()(1  T
xxx RRR  . 

Using the odd and even function properties of the trigonometric functions, i.e.  sin)sin(   and 

 cos)cos(  , then the inverse of )(xR  (H6) is thus 

(H49)  )(1 xR























cossin0

sincos0

001

)(xR . 

Multiplying ω   (H45) throughout by )( xR  gives 

(H50) 



















0

0)()(







xx RωR








































 0

0

)(

0

0

yR , 

and substituting for )( xR  (H49) and )(yR  (H5) gives 

(H51) 

 sin x  

  sincos zy  

 coscossin  zy . 

These equations can easily be rearranged to give the Euler rates in terms of the body rates as 

(H52) 

   tancossin zyx   

 sincos zy   

   cos/cossin zy  , 

where the first expression for   uses the third expression for  . 

These are alternatively written in terms of rqp ,,  as 

(H53) 

   tancossin rqp   
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 sincos rq   

   cos/cossin rq  , 

and in matrix form as 

(H54) 


















































r

q

p













cos/coscos/sin0

sincos0

tancostansin1







. 

Both the Euler roll and yaw rate,   and  , show the issue highlighted earlier, i.e. when the pitch angle 

  is 90 deg it involves a divide by zero (cos  is zero and tan  is infinite).  This is probably the 

biggest reason cited to use quaternions in place of Euler angles since quaternion rates can be integrated 

through a 90 deg pitch angle whilst remaining finite. 

 

The physical explanation for this singularity is fairly straightforward with reference to, for example, a 

near-vertical spinning top. Suppose, the body x axis (about which it spins) points near vertical with a 

pitch angle of 89 deg, i.e. almost aligned with the z space axis, and with a yaw angle of 0 deg, then 

should the axis go from 89 to 91 deg via 90 deg then its yaw angle becomes 180 deg. Thus the small 

movement in pitch from 89 to 91 deg has created a large 180 deg change in yaw (azimuth). The result, 

is a very high yaw rate compared with the pitch rate, i.e. a 180 deg/s yaw rate versus a 2 deg/s pitch rate 

- assuming the manoeuvre occurs in 1s. Note that the pitch movement from 89 deg to 91 deg, going 

through 90 deg, is known as 'crossing the zenith' - particularly in astronomy. Of course, spinning tops 

do not actually go through the zenith but tend to precess around it. Nevertheless, telescopes or radar 

antenna, when tracking an object or changing to track a different object, may well frequently cross the 

zenith. They will use the azimuth rate in their tracking loop and therefore experience a large yaw rate 

near the zenith. At the zenith (90 deg pitch), the yaw rate,   (H53), will blow-up to infinity, and so too 

the roll rate  . Thus, the 90 deg pitch singularity can be a big problem in real-world applications, and 

is resolved by using quaternions, which do not suffer this deficiency. Note that some applications do 

not track in roll, e.g. steering a telescope is in yaw and pitch only (azimuth and elevation ~ right-

ascension and declination), hence the emphasis here is on yaw, not roll. 

(H-7) Euler's Angular Equations of Motion 

Equations (H54) are commonly used to obtain the Euler angle rates   ,,  from the vector body rates 

zyx  ,,  (or rqp ,, ) because the body rates are obtained by integration of the angular accelerations 

x , y , z  , which are themselves calculated straight from the following force/torque ( x , y , z ) 

equations, also known as Euler's equations: 

(H55) 

)( zzyyzyxxxx III    

)( xxzzxzyyyy III    

)( yyxxyxzzzz III   . 
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The three inertia components yyxx II ,  and zzI  are about the principal axes, and obtained from the 

diagonalised inertia tensor bI , i.e. 

(H56) 


















zz

yy

xx

b

I

I

I

00

00

00

I . 

The above Euler equations are trivially rearranged to give the angular accelerations x , y , z  as 

(H57) 
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zzyy

zy
xx

x
x

I

II

I





   
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z
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I





  , 

and written alternatively in terms of symbols rqp ,,  as 

(H58) 

)(
xx

zzyy

xx

x

I

II
qr

I
p





  

)(
yy

xxzz

yy

y

I

II
rp

I
q





  

)(
zz

yyxx

zz

z

I

II
pq

I
r





 . 

The complete process to go from the known torques acting, to obtain the Euler angles and thus the body 

orientation, is an extremely common application in aerospace, the motor industry, robotics and 

computer graphics, and invariably involves quaternions, all detailed in the main text; see Sections (9) to 

(12) on quaternions, and Section (14) on rigid body dynamics. 

 


