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Abstract. This paper is a review of some key methods and results arising from the 
first few years of original research in the new subject of Unity Root Matrix Theory, 
which the author believes may offer a discrete formulation of physical laws at the most 
fundamental, Planck level. This belief stemming from the similarity of the methods 
used, principles employed, and results obtained, to mathematical physics. The paper 
starts with a comprehensive review of unity root matrix theory's founding, 3x3 
formulation and the physical phenomena that led to its development towards a discrete 
description of the laws of nature. It then proceeds to the higher-dimensional extensions 
with 5x5 matrices and two related examples in the Special Theory of Relativity. The 
first example is a Doppler-parameterised solution showing cosmological expansion in 
accordance with the Hubble law, and the second example illustrates the implicit 
introduction of mass via a non-zero scalar potential in the energy conservation 
equation. The paper completes by converting the second solution back to a Newtonian 
form.  
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1 Introduction - why URMT? 

Unity Root Matrix Theory's origins lie in number theory and the study of nth order Diophantine 
equations and congruence relations in their variables [1]. This early work resulted in an eigenvector 
equation to an all-integer, unity root matrix, where the characteristic equation is treated as an energy 
conservation equation. By applying novel variational techniques to this equation, with an associated 
invariance principle, an invariant, eigenvector solution can be obtained, which forms the foundations 
of URMT. Further simplifications give a complete eigenvector solution that has a consistent, physical, 
dynamical interpretation, with acceleration, velocity and position eigenvectors related by classical 
calculus relations, and conservation laws with scalar invariants arising between the eigenvector inner 
products. Extending the formulation to four and higher dimensions [2], with the invariant eigenvalue 
attributed to the speed of light, gives a relativistic, Doppler solution [3]. Extending the solution further 
shows that the potential energy can be related to the appearance of mass via a sub-luminal velocity, 
with the characteristic equation identical to the relativistic energy-momentum equation. Lastly, this 
relativistic mass solution can be simplified to show a classical, Newtonian, constant acceleration 
solution in its first three dimensions. 

Given the tremendous success of the Standard Model and Relativity, it is worth explaining just why 
there is any need for a new theory, or at least a reformulation of existing physics in a discrete form. 

First and foremost, it is the belief of the author that, at the Planck level, nature is just not as 
complicated as currently formulated with regard to the current theories of a unified quantum gravity. 
The reasoning behind this belief in a simpler formulation stems directly from the fact that nature may 
well appear complex, but never really is when its workings are revealed. Witness the myriad of life 
that arises from just four DNA bases, or the apparent complexity of patterns in nature, the latter arising 
from the repeated application of a simple rule. Related to this is the highly unpredictable, chaotic 
phenomena that materialises from a repeated folding action. See [4] for examples of chaotic and 
complex phenomena. It is no coincidence that the process of folding is akin to modular arithmetic, and 
fundamental to URMT. In particular, in its definition of unity roots (or primitive roots [5]) and its 
variational methods. The same repeated application of modular arithmetic is also commonly used in 
the generation of random number sequences, i.e. what appears random has, in fact, a very simple rule 
at its heart. In brief, it is thought all the laws of nature must ultimately have this simplicity. 

This belief is also behind the reason why a discrete formulation of nature is considered necessary, and 
that we cannot keep applying our continuous differential equations at ever smaller levels. For example, 
URMT shows a natural calculus can arise even without any preconceived notions of limits or real 
analysis, it just emerges from the laws of large numbers. Whereas we tend to think of approximating 
differential equations in a discrete form using a computer, in fact we are really approximating nature 
by using such continuous forms in the first place, and we would be better off starting from the bottom 
upward with a discrete theory, and ensuring its large limit is that of the differential equations of 
mathematical physics. 

Whilst this might seem speculative, the results of URMT, many of which are reviewed  in this paper, 
show a lot of physics can come from what are rather abstract origins in number theory. 

Developing a discrete theory like URMT is not to say the Standard Model or Relativity are wrong - far 
from it. Everyday they seem to get further supporting evidence, and are believed to be correct 
precisely because their formulation, based on the principles of invariance and symmetry, is correct at 
the macroscopic level, i.e. many orders above the Planck scale. Note that any elemental formulation of 

nature does not necessarily have to be at the Planck scale, i.e. mO )10( 35  and sO )10( 44 . However, 
whatever its scale, it will almost certainly materialise many orders of magnitude smaller than that 
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currently observable, and perhaps even smaller than the Planck scale. The simple reasoning for this 
statement is that currently the macroscopic, observable world (spacetime anyhow) appears continuous, 
with such perceived continuity being attributed, in a discrete theory, to the extremely large numbers 
involved. 

Whilst the Standard Model and Relativity are considered correct, we do not have a unified theory of 
quantum gravity, neither does the author believe we will get one by continuing with a continuous 
theory of nature. In brief, it is not the general principles that are considered wrong, merely the 
formulation at the most elemental level. 

Most URMT work to date reproduces existing physics with some predictions such as cosmological 
expansion [3] and compactification [2], but it is accepted that a new discrete formulation should also 
produce new predictions. Indeed, it was hoped that, given URMT's invariant eigenvalue can be 
consistently associated with the speed of light ( c ), it might enable its value to be calculated directly. 
However, so far, it is an input constant (the invariant eigenvalue), and URMT can be made to work 
with an arbitrary value of c  - unity preferred (hence unity roots). Nevertheless, that c  can even be 
successfully associated with equations in number theory, with scant regard to physics, lends further 
credence to URMT as a physical theory. With this in mind, the determination of the gravitational 
constant ( G ), and or Planck's constant ( h ), may well be possible. But even if URMT were just 
another formulation, the Hamiltonian formulation of mechanics is testimony to how such a 
reformulation of existing laws and methods, i.e. Lagrangian dynamics, can eventually lead to new 
physics, i.e. quantum mechanics. 

To finish this justification, the biggest reason to pursue URMT is that, after a lot of work in the 
subject, "it has far too many similarities to mathematical physics to ignore", and given we seem to be 
no nearer to a unified theory, thirty or more years after what might be considered the most successful 
theory of recent times, i.e. Electroweak, it is not time to restrict ourselves to just one or two 
candidates, but also consider some more radical alternatives. 

The nearest related subject to URMT is probably discrete physics. But URMT is not about converting 
existing continuous equations into a discrete form, but rather it starts with integer (Diophantine) 
equations and then proceeds to develop their physical associations. As such, it appears to be a 
completely new subject area (less than five years old) and, to the author's best knowledge, the only 
currently available texts are the first three books published, [1], [2] and [3], plus some free material at 
the web-site http://www.urmt.org including a lengthy presentation and overview - follow the link 'free 
PDF Downloads'.  
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2 Unity Root Matrix Theory 3x3 

This section is a review of the original 3x3, 'URM3' formulation of URMT, first published in [1]. 

2.1 Origins in Number Theory 

The number-theoretic origins of URMT lead to the following three linear equations in three, integer 
unknowns zyx ,, , for positive, integer constant C  (soon to become an eigenvalue), and unity roots 

RQP ,,  and RQP ,,  - strictly speaking these are only 'unity' roots (or primitive roots) when 1C , 

and power residues otherwise for 1C ; see [5]. 

 zQRyCx   (2.1) 

 PzxRCy   (2.2) 

 yPQxCz   (2.3) 

 C ℤ, 1C , (2.4) 

   zyx ,, ℤ, )0,0,0(),,( zyx , 1),gcd(),gcd(),gcd(  xzzyyx . 

 

   )mod( xCP nn  , )mod( yCQ nn  ,  )mod( zCR nn  , n ℤ, 2n  

   )mod( xCP nn  , )mod( yCQ nn  , )mod( zCR nn   (2.5) 

   RQP ,, ℤ, )0,0,0(),,( RQP , RQP ,, ℤ, )0,0,0(),,( RQP . 

From a physical perspective, the three equations (2.1) to (2.3) can be thought of as representing three, 
coupled objects ( zyx ,, ), each one couples to the other two, but not itself, no one object is more 
important than the other. This ternary aspect, and nature's own abundance of groupings of three e.g. 
three generations of particles and three spatial dimensions, plus a notion of conjugacy amongst pairs of 
variables, i.e. particle/anti-particle, provided some early impetus to pursue possible physical links. 

The unity roots RQP ,,  are related to their conjugates RQP ,,  by the following 'conjugate relations': 

 )(mod12 xPPC nn   , )(mod12 yQQC nn   , )(mod12 zRRC nn    (2.6) 

The three variables zyx ,,  satisfy the following 'coordinate equation' [1] for some integer k : 

 ),,(.0 zyxkxyzzyx nnn  , k ℤ, 0k . 

Of course, k  is never zero for 2n , as proven by Wiles [6]. 

The following scale (or divisibility) factors  ,   and   are defined in terms of zyx ,, , the unity 

roots (2.5) and constant C  (2.4) as follows, they are also all integers: 
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 xPPC  )( 2  

 yQQC  )( 2  (2.7) 

 zRRC  )( 2  

  ,, ℤ, )0,0,0(),,(  . 

The above definitions derive from the number-theory side of URMT. However, given the real interest 
of the author and, in fact, the entire subject of URMT is 'Physics in Integers' [1], then a more physical 
derivation will be given shortly in terms of a single energy equation, subjected to variational methods, 
and coupled with an invariance principle. 

2.2 The Unity Root Matrix and Invariant Eigenvector 

Defining the unity root matrix 3A  and vector 3X  in terms of the coordinates zyx ,,  and unity roots 

RQP ,,  and RQP ,,  as follows: 

 

















0

0

0

3

PQ

PR

QR

A , 

















z

y

x

3X , (2.8) 

then the three linear equations (2.1) to (2.3) are written in matrix form, eigenvalue C , as 

   333 XXA C  (2.9) 

The linear equations represented by (2.9) are known as the 'dynamical equations' in URMT due to the 
later association of the unity roots as velocity quantities; see the standard physical interpretation (SPI), 

Section (2.15). Likewise, the unity roots RQP ,,  and RQP ,,  are termed 'dynamical variables'. 

When C  is unity, the matrix 3A  is a true unity root matrix, and when 1C  the congruences (2.5) 

are non-unity, power residues. However, [1] shows how the theory for 1C  can be developed 
assuming unity roots, i.e. 1C , and the matrix 3A  is termed a unity root matrix regardless of the 

value of C  - unity or greater. 

A reciprocal, row eigenvector is defined in terms of the scale factors  ,,  (2.7) as 

  3X , (2.10) 

and satisfies the eigenvector equation 

   3
3

3 XAX C . 

2.3 The Dynamical Conservation Equation 

To obtain eigenvector solutions to the dynamical equations (2.9), the non-singular determinant 
condition on 3A , for eigenvalue  , is 
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 0)det( 33  IA , 

which expands to the following characteristic equation: 

 )()(0 3 RQPPQRRRQQPP   . (2.11) 

Of course, one such eigenvector 3X , eigenvalue C , is already given (2.8). However, its analytic 

solution in terms of the dynamical variables (unity roots) will be derived again in Section (2.6). 

Defining the kinetic energy term K  and potential energy term V  (per unit mass) as follows 

 RRQQPPK  , kinetic energy per unit mass, (2.12) 

 CRQPPQRV /)(  , potential energy per unit mass (2.13) 

then (2.11) shortens to 

 VCK  30 . (2.14) 

Substituting for the single eigenvalue C  and dividing throughout by C , which is always positive, 
non-zero by (2.4), then the following 'Dynamical Conservation Equation' is obtained 

 VKC 2 , the Dynamical Conservation Equation (the DCE). (2.15) 

This will form the founding equation for the physical development of the theory. The justification for 
ascribing the terms in the dynamical variables as velocity quantities is seen throughout URMT by the 
consistent physical results it gives. 

Written in full, using K  (2.12) and V  (2.13), the DCE is 

 
C

RQPPQR
RRQQPPC

)(
)(2 
 . (2.16) 

Barring the explicit omission of mass, it can already be seen where URMT is heading with (2.15), i.e. 
multiplying by the mass m  gives 

 )(2 VKmmCE  , K  and V  are per unit mass., (2.17) 

This energy equation pervades all URMT, as will be seen throughout this paper. 

2.4 The Potential Equation 

Summing all three divisibility relations (2.7) gives 

 zyxRRQQPPC   )(3 2 , 

and by substituting for the kinetic energy K  (2.12), and using the DCE (2.15), this becomes the 
'potential equation': 
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 VzyxC  22 , the potential equation. (2.18) 

This is another conservation equation in URMT, and links all four sets of variables zyx ,, ,  RQP ,, , 

RQP ,,  and  ,,  (2.7)  to give another invariant 22C  to go with 2C  (the total energy per unit 
mass) in the DCE (2.15). 

Some physical justification for calling this the potential equation and, indeed, assigning the name 
potential in (2.13), can be seen by noting that the scale factors  ,,  are later physically associated 
with position coordinates, and the coordinates zyx ,,  as accelerations - or rather negative force per 
unit mass; see Section (2.15). With this in mind, by defining a gradient operator as 

 ),,(   , (2.19) 

then applying this to the potential equation (2.18), for constant C  (invariant by definition), gives 

 ),,( zyxV  , 

and since zyx ,,  are associated with accelerations, i.e. force per unit mass ( F ), then V  is consistent 
with the standard force/potential equation 

 ),,( zyxV F , force per unit mass. 

Although this form of gradient operator (2.19) is not actually used further, the consistent derivation 
here of a force from a scalar potential provides some more substance to the rather abstract energy 
terms and physical associations mentioned above and detailed in Section (2.15). 

2.5 Variational Methods 

Local variations 

Because the dynamical variables are unity roots, defined by congruences (2.5), they are not unique, 
and their definitions hold true for three, arbitrary, integer 'local' variations  ,,  

 xPP  , xPP  , 

 yQQ  , yQQ  , (2.20) 

 zRR  , zRR  , 

  ,, ℤ. 

The variations are termed local because they act independently on each row of the unity root matrix 

3A  (2.8), e.g. R  and Q  in the top row are varied by  . Conversely, a single 'global delta variation', 

symbol  , will be defined later (2.26) that acts on the entire matrix 3A . 
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In matrix form, these local variations are represented by the following variational matrix, symbol Δ : 

 





















0

0

0

xy

xz

yz





Δ . (2.21) 

This matrix has the following annihilator property: 

 03 ΔX . (2.22) 

The variation on the unity root matrix 3A  is written as the mapping 

 ΔAA  33 , 

and, by design, the transformation ΔA 3  leaves 3X  invariant as follows, using (2.22), 

   33333333 XXAΔXXAΔ)X(A C . 

Thus, using (2.21), the most general form of 3A  that preserves the eigenvector equation (2.9) is 

 






































0

0

0

0

0

0

3

xy

xz

yz

PQ

PR

QR





A . 

By comparing this matrix 3A  with the original, unvaried form (2.8), the transformation equations in 

the dynamical variables (2.20) are verified. 

Whether the variation is local or global, all equations in the dynamical variables, plus the eigenvector 

3X  and eigenvalue C , remain invariant to these variations, and this is enshrined in URMT in the 

following Invariance Principle: 

2.6 The Invariance Principle 

The dynamical equations and their solutions are invariant to a coordinate transformation in the 
dynamical variables. 

The coordinate transformation in the dynamical variables is already defined above as the local 
variations (2.20). By applying these local transformations to the DCE (2.16), six separate terms, one 
for each of the six possible combinations of the local variational elements  ,, , are obtained. 

Collecting the three separate, quadratic variations in  ,   and  , and equating to zero since the 
equations must remain invariant by the above principle, then the same three dynamical equations, as 
first given in (2.2), are obtained, i.e. 

zQRyCx  ,   term (2.1) 

PzxRCy  ,   term (2.2) 
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yPQxCz  ,   terms (2.3). 

However, the remaining three, linear (first degree) variational terms in  ,,  give the three possible 
solutions in zyx ,,  to these dynamical equations, two of which are independent: 

 )()( PRCQyPQRCz  ,   term, z  in terms of y , 

   )()( QRPCxQPCRz  ,   term, z  in terms of x , (2.23) 

  )()( RQCPxRPQCy  ,   term, y  in terms of x . (2.24) 

A key feature of this URMT-unique variational method is that, when applied to its foundation, energy 
conservation equation (the DCE), it enables both the dynamical equations and their solutions to be 
obtained. This application of a variational method to an energy conservation equation is considered 
analogous to an action principle applied to a Lagrangian function to obtain the field equations. 
However, the Lagrangian method only provides equations that then require solving, which is not the 
case here, where they effectively come for free. 

One possible eigenvector solution for 3X  can be obtained from (2.23) and (2.24) in terms of x  as a 

parameter: 

 

















































QPCR

QRPC

RPQC

RQCP
x

1

.3X . (2.25) 

See [1], paper 5, Appendix (C) for a full list of the nine possible forms of eigenvector solution (three 
of which are linearly independent) albeit they are given for a unity eigenvalue 1C . Nevertheless, it 
is very easy to convert them to a general eigenvalue C  simply by ensuring every first degree term in a 
dynamical variable becomes a second degree term by multiplication by C , e.g. a term such as 

RQP   becomes RQCP  . Thus all terms are of second degree in the dynamical variables 

(including the eigenvalue C ), i.e. velocity squared, or energy per unit mass; Section (2.15). 

The reader is reminded that all the above equations in this section are valid for a general eigenvalue 
 . If all three eigenvalues are known then all three eigenvectors can be obtained simply by replacing 
C  with one of the three possible values for  , which are the three roots of the cubic polynomial 
(2.11). So far, however, only a single eigenvector 3X , eigenvalue C , has been obtained. 

The analytic form (2.25) of the eigenvector 3X , eigenvalue C , is not actually required further, 

and its general form 3X  (2.8) is sufficient to proceed. A more amenable, parametric form is given 

further below in Section (2.12). 
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2.7 A Global Pythagoras Variation 

Returning to the variational methods in Section (2.5), by setting the two, local variational parameters 
  and   to the value of   in the following way 

   ,   , (2.26) 

then the variational matrix Δ  (2.21) simplifies to the following, 'Pythagorean' form, symbol PΔ : 

 





















0

0

0

xy

xz

yz
P Δ . (2.27) 

The reason for this Pythagorean nomenclature will be seen shortly in the next section where vectors 

3X  (2.8) and 3X  (2.10) are seen to satisfy the Pythagoras equation. By (2.20), the dynamical 

variables also now transform as follows: 

 xPP  , yQQ  , zRR  , 

 xPP  , yQQ  , zRR  , 

and substituting for these transformed dynamical variables into the DCE (2.16), collecting terms in   

and 2 , and equating to zero in accordance with the Invariance Principle, then the following two 
expressions are obtained: 

  term: 

)()()(

0

RRzQQyPPx

C

QPPQ
z

C

PRRP
y

C

RQQR
x










 








 








 


. (2.28) 

 

 2 term : 






 








 








 


C

PP
yz

C

QQ
xz

C

RR
xyzyx 2220 . (2.29) 

The second, 2  term is noteworthy in that nowhere, so far, has a quadratic exponent been asserted, 

and this variation holds for all exponents 2n , not just 2n , yet from this nth order derivation the 
Pythagoras equation naturally emerges. 

2.8 URM3 Pythagoras Conditions 

It can be seen from the 2  (2.29) that if the conjugate dynamical variables RQP ,,  are equated to 

their standard forms RQP ,,  as follows: 

 PP  , QQ  , RR  , the Pythagoras conditions, (2.30) 
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then (2.29) reduces to the Pythagoras equation, i.e. 

 2220 zyx  . (2.31) 

This means that the elements zyx ,,  of eigenvector 3X  also satisfy the Pythagoras equation. Whilst a 

quadratic, Pythagorean exponent 2n  has not been asserted, by enforcing the Pythagoras conditions 
(2.30) on the dynamical variables, if the coordinates satisfy Pythagoras (2.31) then they cannot 

simultaneously satisfy a higher order, 2n , form of the coordinate equation (2.7), and the k -value 
must therefore be zero in this case. 

Although not demonstrated here (see (2.54)), the scale factors  ,,  also satisfy Pythagoras, i.e. 

 2220   . (2.32) 

Congruence relations such as )(mod xPP   can be obtained by substituting 2n  in the conjugate 
relations (2.6), but the Pythagoras conditions (2.30) are actually equalities (identities), and not 

congruences. If P  and P  are congruent, but not identical, then the coordinate equation (2.7) remains 
perfectly valid as a quadratic Diophantine equation, except its k -value is now non-zero. 

If the above was all there was to URMT then, whilst intriguing, it might remain a curio with not much 
real physics. However, armed with the Pythagoras conditions (2.30) and equations of quadratic degree, 
this is where most of the real URMT physics starts. 

2.9 An Invariant Zero Potential 

Applying the Pythagoras conditions (2.30) to the kinetic term K  (2.12) and potential term V  (2.13), 
they become 

 222 RQPK  , (2.33) 

 0V . (2.34) 

The Potential energy is thus zero and the DCE (2.15) simply becomes constant energy, kinetic term: 

 KC 2 , the DCE, energy per unit mass, (2.35) 

and implies by (2.33) that the dynamical variables RQP ,,  satisfy the following hyperbolic 
conservation equation, which is, once again, a form of the DCE. 

 2222 RQPC  . (2.36) 

With 0V , and under Pythagoras conditions (2.30), the potential equation (2.18) reduces to 

 zyxC  22 , the potential equation. (2.37) 

The characteristic equation (2.14) also simplifies to 

  K 30 , 
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and thus, using K  (2.35), there are three, symmetric eigenvalues 

 0,C . 

By applying the conditions (2.30) to the   term (2.28), another conservation equation is obtained, 
termed the 'Pythagoras delta equation': 

 xPzRyQ 0 , the Pythagoras delta equation. (2.38) 

In fact, all five conservation equations (2.31), (2.32), (2.36), (2.37)  and (2.38) are related to the inner 
products of the eigenvectors of the matrix 30A , (2.39) below, and there is also a sixth conservation 

equation that completes the set; see Section (2.14). 

Under Pythagoras conditions, the matrix 3A  simplifies as follows, and is also relabelled 30A , where 

the extra subscript of zero denotes it is subject to these conditions: 

 

















0

0

0

30

PQ

PR

QR

A . (2.39) 

In pursuit of the conservation equations as vector inner products, the eigenvectors are given next. 

2.10   The Pythagorean Eigenvectors 

Having already defined all the necessary variables, the Pythagorean eigenvectors are stated here 
without proof as follows, the reader is referred to [1] for full details. 

 

















z

y

x

3X , 
















R

Q

P

30X , 























3X , (2.40) 

   3330 XXA C , 030 AX ,   3330 XXA C . 

The reciprocal, row-eigenvectors 3X , 30X  and 3X  are defined by the following eigenvector 
equations: 

   3
30

3 XAX C , 030
30 AX ,   3

30
3 XAX C , 

and obtained from their standard counterparts using the following ' T  operator' and relations 

 






















100

010

001
3

3 TT , the URM3 T  operator (2.41) 

  T
  3

33 XTX ,  T30
330 XTX  ,  T

  3
33 XTX , (2.42) 
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which gives 

  3X ,  RQP 30X ,  zyx 3X . (2.43) 

The Minkowski-like metric form of the T operator (2.41) is no coincidence - see also 5T  (4.7) and 

URMT's five-dimensional STR solution in Section (4). 

2.11  Conjugate Forms 

The reciprocal, row eigenvectors (2.43) are also known as conjugates, and denoted by an over-struck 
bar as in the following definitions: 

 
 

3
3 XX , 30

30 XX   and 
 

3
3 XX , conjugate forms. (2.44) 

Conjugate vectors, e.g. 3X , contract with their standard forms, such as 3X  in this example, to give 

real scalars, 033 XX  (2.54), further below. This contraction to give a scalar is in accordance with 
both the rules of matrix (vector) multiplication and tensor algebra. 

2.12  The URM3 Parametric Solution 

The URM3 eigenvector problem, under Pythagoras conditions (2.30), is a completely solved problem, 
with the coordinates zyx ,,  given by the standard parameterisation for two integers k  and l  

 lk , ℤ, )0,0(),( lk , 1),gcd( lk , (2.45) 

 klx 2 , )( 22 kly  , )( 22 klz  . (2.46) 

The dynamical variables RQP ,,  and scale factors  ,,  are obtained in terms of both integers k  

and l , and two new integers s  and t , which are actually solutions to the following Linear 
Diophantine equation (LDE): 

 ltksC  , ts, ℤ. (2.47) 

This LDE always has a solution since 1),gcd( lk  (2.45), and once a particular solution s  and t   is 
obtained, by algorithmic means [5], then an infinite family of solutions can be generated, denoted here 
by integers s  and t , and parameterised by another arbitrary integer 3t  as follows: 

 ltss 3 , kttt 3 , 

 3t ℤ,  ts , ℤ, )0,0,0(),,( 3  tts . (2.48) 

With a solution for s  and t  obtained, then the dynamical variables and scale factors are given by 

 )( ltksP  , )( ktlsQ  ,  )( ktlsR  , (2.49) 

 st2 , )( 22 st  , )( 22 st  . (2.50)  
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2.13  Eigenvector Temporal Evolution 

By virtue of the arbitrary parameter 3t  (2.48) in the previous section, two of the three eigenvectors, 

30X  and 3X  evolve with 3t , which can be identified as a temporal parameter under the SPI, Section 

(2.15). In fact, this parameter 3t  is also identical to the negative of the global variation parameter   in 

(2.27), i.e. 3t . By substituting the parametric solution for RQP ,,  (2.49) and  ,,  (2.50) into 

the eigenvectors (2.40), the following eigenvector evolution equations can be obtained; see also [1] 
(using symbol 3t  instead of m ), where the initial values at time zero, 03 t , are superscripted with a 

prime, i.e. 

 )0( 333   tXX , )0( 33030  tXX , )0( 333   tXX , 3t  ~ ~m  in [1]. (2.51) 

The eigenvector evolution equations in standard vector form are: 

   33 XX , static, no 3t  dependence, 

 3033330 )( XXX  tt , 

   33033
2
333 2)( XXXX ttt , (2.52) 

and their reciprocal forms, using (2.42), are 

   33 XX , static, no 3t  dependence, 

 303
33

30 )( XXX  tt , 

   330
3

32
33

3 2)( XXXX ttt , 

From these evolution equations, the calculus relations given in Section (2.16) can be verified. 

The reader is referred to [1] for a geometric account of URM3 eigenvector evolution.  

2.14  Conservation Equations and Invariants 

The six key conservation equations of URMT (the first five have already been given earlier), as 
obtained from the inner product relations between the eigenvectors and their reciprocals (or conjugates 
(2.44)), are given here for URM3. See Appendix (F) in either [2] or [3] for the general, n-dimensional 
case. The 5-dimensional variants, as required for STR, are given further in this paper. Note that the 
complete set of conservation equations is only valid under URMT Pythagoras conditions, e.g. (2.30) 
for URM3: 

 0222
333

3  
 zyxXXXX  Pythagoras (zero norm), (2.53) 

 0222
333

3  
 XXXX  Pythagoras (zero norm), (2.54) 

 2222
303030

30 CRQP  XXXX  the DCE, (2.55) 

 
2

3
3

3
3 2Czyx  




 XXXX , the potential equation, 0V  (2.34), 
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 030
3

3
30  

 zRyQxPXXXX , the delta equation, 

 030
3

3
30  

 RQP XXXX , the dual delta equation. 

The first two, Pythagoras equations are equivalent to the norms of 3X  and 3X , where the norm X  

of a vector X  is defined in URMT as the inner product of the column vector X  with its conjugate (or 

reciprocal) row vector X , i.e. using relations (2.44) then the norms are zero as in 

 03
3

33

2

3  


 XXXXX , by (2.53), (2.56) 

 03
3

33
2

3  


 XXXXX , by (2.54). 

2.15 The Standard Physical Interpretation 

The URMT standard physical interpretation (SPI) of all variables, eigenvectors and matrices, as first 
given for URM3 in [1], and Appendix (J) in [2] and [3], is reproduced below. 

Following the publication of [3], this is not the only physical interpretation and, indeed, the URMT 
Harmonic Oscillator in [3] is a 'dual', physical interpretation. Nevertheless, this SPI seems the best as 
regards the STR solution, which is detailed in the next few sections. 

3X , 3X , Δ , zyx ,, , acceleration or force per unit mass, 2LT  

3A , 30A , 30X , 30X , RQP ,, , RQP ,, , C , velocity or momentum per unit mass, 1LT  

3X , 3X ,  ,  ,  , position, L  

3t , m ,  , time, T  

K , V , 2C , velocity squared or total energy E  ( 2CE  ) per unit mass, 22 TL . 

Note that all conjugate quantities have the same physical units as their standard forms, e.g. 

)( 3Xunits )( 3 Xunits )(  Xunits = acceleration = 2LT . This is not the case for the related 

reciprocal quantities, e.g. )( 3Xunits )( 3 Xunits  and )( 3Xunits )( 3 Xunits , except when 

they are self-reciprocal, i.e. in the case of the zero eigenvectors 30X  and 30X , where 

)( 30Xunits )( 30Xunits . The physical units of all conjugate and reciprocal vectors can be 

determined from the T  operator relations (2.42) using the above units for the standard forms. 

2.16 URM3 Calculus Relations 

Whilst URM3 vectors 3X , 30X , 3X  can be consistently interpreted in terms of their physical units, 

with an acceleration, velocity and position vector respectively, they are also related via the following 
calculus relations, further justifying the standard physical interpretation as given above. Keep in mind 
there is no explicit calculus, i.e. limiting process, in URMT. 
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The standard calculus derivative 
3dt

d
(~

dm

d
 in [1]) is used as a good, large 3t  approximation for 

discrete differences  ,  i.e. 

33 tdt

d




 ~ 3tΔ , 03 t , 133  tt  , 

30
3

3 2X
X



dt

d
, derivative of position = twice velocity ( 30X ), 

 X
X

3

30

dt

d
, derivative of velocity = acceleration (  3X ), 

0
3

3 

dt

dX
, derivative of acceleration = zero (constant acceleration), 


  3

3
2

3
2

2X
X

td

d
, second derivative of position = twice acceleration (  3X ). 

2.17  Geometric and Physical Aspects 

So far, all URMT’s properties have been algebraically expressed, but the eigenvector solution also 
possesses some interesting geometric properties, as now described. 

The two eigenvectors X  and X , for the two, non-zero eigenvalues C , are Pythagorean, i.e. they 
satisfy the Pythagoras equation (4.29) and (4.30), and have zero norm (4.49). Because they satisfy 
Pythagoras, they each form a 2D, discrete cone in 3D, ultimately parameterised by three integers k , l  
(4.50) and 3t  (4.53), where the third parameter 3t  is temporal. The set of all points covered by these 

parameters represents an infinite set of eigenvectors, and is denoted by the two cone sets UC  and LC  

for X  and X  respectively. For each point in UC , i.e. fixed X , the position eigenvector X  

evolves with time 3t . For large 3t , see (4.58), it changes by multiples of X  and, given both it and 

X  are Pythagorean, with a zero norm (4.49), it effectively traces a null trajectory in the cone LC . 

Furthermore, this trajectory has inverse square law curvature with respect to time 3t  [1]#3, Since it is 

also at a zero, constant potential at every point (4.32), there are no forces acting in the direction of 

motion and it therefore possesses a constant kinetic energy (per unit mass) of 2C . It is thus physically 
interpreted as the null (zero norm), geodesic trajectory of a massless particle (with C  equated to the 
speed of light c) in free-fall. 

Because X  and X  can never be zero, due to the non-zero value of eigenvalue C  (4.0), the cones 

UC  and LC  actually have no tip, i.e. there is no point (0,0,0), and this is termed 'no-singularity' in 

URMT for obvious reasons. 

As regards the zero eigenvector 0X , it represents a velocity (4.42), and its solution space forms a 2D, 

discrete hyperbolic sheet in 3D, denoted by the infinite set of points H  [1]. The discrete hyperbolic 
sheet is the DCE, i.e. the conservation equation (4.45) in 0X , where the elements of 0X  are the 

dynamical variables RQP ,, . Like X , 0X  also evolves with time 3t . 
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Taken together, the union of the sets LC , UC  and H  forms the discrete lattice L , which represents 

the complete URM3 eigenvector solution. As time 3t  progresses, the discrete hyperbolic sheet of 0X  

converges (asymptotically) on to the cone LC , both of which align anti-parallel to UC , and the 

solution is said to 'flatten' [1]#3. At every point in the lattice, the conservation equations, Section 
(Error! Reference source not found.), i.e. inner products between the eigenvectors, give the same set 

of invariants, }2,,0{ 22 CC  , and for unity eigenvalue this is just }2,1,0{  , i.e. the most basic units 

possible. Note that the negative values can be achieved by reversing the sign of the T  operator (4.39) 
without detriment to the eigenvectors (4.41). These integer invariants hint at a fundamental 
quantisation of conserved quantities such as charge, spin etc. 

This completes the review of the 3x3 fundamentals of URMT, the paper now proceeds to higher-
dimensional extensions and their application to STR. 
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3 STR Higher Dimensional Extensions 

Under the SPI, Section (2.15), which includes URM3 Pythagoras conditions as standard, and hence 
quadratic, Diophantine conservation equations, Section (2.14), URM3 is effectively limited to a two-
dimensional subspace of three-spatial dimensions, i.e. the discrete cone surface that is represented by 
the zero norm eigenvectors, 3X  and 3X , whose elements satisfy the Pythagoras equation (2.53) and 

(2.54) respectively. There is also the discrete hyperbolic surface, eigenvector 30X , that represents the 

DCE (2.55). Including a time-dimension 3t  (2.48) as the variational (evolutionary) parameter, the 

URM3 solution is physically considered to be a two-spatial, one-time ('2+1') dimensional 
representation of a massless particle moving at the speed of light. For particles with mass, sub-luminal 
speeds, and a consequent non-zero relativistic interval c , (4.1b) further below, five dimensions are 
actually required in URMT (three spatial zyx ,, , one each for laboratory time t  and proper time  ), 
hence the need to extend URM3 to higher dimensions (notably five here), as first published in [2]. 

The extension to higher dimensions n , where 3n  ( n  is not the exponent (2.5) here), naturally 
involves extending to nn  unity root matrices and n -element eigenvectors, whilst retaining an 
eigenvector solution with the same URM3 invariant, zero potential , Section (2.9), as a starting point, 
to give compatibility with URM3. Doing this ensures that the same two, non-zero eigenvalues appear 
( C ), with all others zero, accompanied by the same set of Pythagorean, eigenvectors X  and X , 

but now with additional zero eigenvectors ,,,0 CBAX  etc., one for each repeated zero eigenvalue. The 

resulting solution shows that each excess dimensional element of 0X  (four and higher) comprises a 

single, non-zero term in the eigenvalue C  (3.13b), later equated with the speed of light (4.13c). 

3.1 The URM5 Unity Root Matrix 

To extend the number of spatial dimensions to a full three, as in the world around us, plus add one 
time dimension, and also an extra dimension for the proper time, the URM3 unity root matrix (2.8) is 
extended to a 5x5 matrix 5A  as follows: 

 

























0

0

0

0

0

5

PQUJ

PRTN

QRSH

UTSM

JNHM

A , (3.1) 

comprising ten dynamical variables 

 JNHM ,,, ℤ, (URM5), UTS ,, ℤ , (URM4), (3.2) 

 RQP ,, ℤ, )0,0,0(),,( RQP  (2.5), (URM3), 

and their conjugates 

 JNHM ,,, ℤ, (URM5), UTS ,, ℤ, (URM4), (3.3) 
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 RQP ,, ℤ, )0,0,0(),,( RQP  (2.5), (URM3). 

The lower-right, 3x3 sub-matrix of 5A  (3.1) is the same as the URM3 matrix 30A  (2.39). 

Only the URM3 dynamical variables RQP ,,  and RQP ,,  are true integer, unity roots (2.5), whilst 

the new dynamical variables JNHM ,,,  (URM5) and UTS ,,  (URM4), plus their conjugates 

JNHM ,,,  and UTS ,,  respectively, are defined by the URM5 Pythagoras conditions, (3.4) below, 
but are not unity roots. Neither are the additional dynamical variables necessarily restricted to the non-
zero conditions, (3.2) and (3.3) above, albeit if they are all simultaneously zero then the theory is 
reduced back to URM3 since 5A  is then just a zero-padded form of 30A . 

Sandwiched in between URM3 and URM5 is URM4, which is almost identical to URM5, barring its 
restriction to four dimensions. As a consequence, it is considered a three-spatial, one time dimension 
(3+1) STR solution for a zero relativistic interval, massless particle, and much the same as URM3 
therefore. Albeit URM4 can have a non-zero potential, even when not under its own Pythagoras 
conditions (3.4), and the possible links with mass are discussed in Section (5) and [3]. 

3.2 URM5 Pythagoras Conditions 

The above URM5 formulation is immediately simplified with the goal of producing analytic solutions 
with the same physical attributes, i.e. an invariant, zero potential as per URM3, where the elements of 
every eigenvector X , for a non-zero eigenvalue ( C ), obey the n-dimensional Pythagoras equation, 
and therefore have zero norm, e.g. (2.56). These simplifications start with the URM5 Pythagoras 
conditions, defined in an almost similar way to URM3 (2.30), i.e. 

 MM  , HH  , NN  , JJ  , (URM5), 

 SS  , TT  , UU  , (URM4), (3.4) 

 PP  , QQ  , RR   (URM3). 

Under these conditions, the matrix 5A  (3.1) becomes 50A : 

 





























0

0

0

0

0

50

PQUJ

PRTN

QRSH

UTSM

JNHM

A . (3.5) 

The URM5 kinetic term K  and potential term V  are defined as follows: 

 )( 2222222222 TSRNMHUQPJK  , (3.6) 

   

   
   
 2

22

22

)(

)()(

)()(

NSMRHT

MPJTNUMQJSHU

HPJRNQRUPSQTV







. (3.7) 
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and using these two terms the characteristic equation for matrix 50A , eigenvalue  , is 

 )(0 24 VK   , (3.8) 

If K  and V  can be reduced to their URM3 forms, i.e. 222 RQPK   (2.33) and 0V  (2.34), 
then the potential energy remains zero and the DCE (2.15) is just the constant kinetic energy: 

 KC 2 . (3.9) 

The characteristic equation (3.8) will also simplify to 

 )(0 23   K , 

and thus, using K  (3.9), there will be two non-zero and three zero eigenvalues, i.e. 

 0,0,0,C . (3.10) 

So, to achieve the same results as the URM3, with the same SPI Section (2.15), the first goal is to 
obtain a constant kinetic energy and zero potential energy. 

3.3 An Invariant Zero Potential 

To obtain a constant kinetic energy (3.9) and zero potential (2.34), the matrix 50A  (3.5) is written in 

the following block matrix form in terms of URM3 vectors, 3X  (2.40) and 3X  (2.43), unity root 

matrix 30A  (2.39) and temporal evolutionary parameters 4t  and 5t  

 



























303435

3
4

3
5

50 00

00

AXX

X

X

A

tt

t

t

, 4t , 5t ℤ , Tttunits ),( 54 , time (3.11) 

Expanding 50A  in full gives 
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
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
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
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






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

0

0

0

00
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45

45
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444

555

50

PQztzt

PRytyt

QRxtxt

sztytxt

ztytxt

A , 

and by comparison with 50A  (3.5), the dynamical variables, UTS ,,  and JNHM ,,,  are  

 0M , xtH 5 , ytN 5 , ztJ 5 , (3.12) 

   xtS 4 , ytT 4 , ztU 4 . 
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These conditions satisfy the URM5 Pythagoras conditions (3.4), but this does not guarantee an 
invariant, zero potential, unlike URM3. However, the reader can verify this particular solution does 
have zero potential energy by substituting for the dynamical variables from (3.12) into (3.7), and using 

Pythagoras (2.31). Likewise, the kinetic energy K  (3.6) can be verified as reducing to 2C  (3.9). 

The temporal parameters 4t  and 5t  are the evolutionary times in the fourth and fifth dimensions 

respectively, i.e. the first two rows and columns of 50A , and complement URM3's temporal parameter 

3t  (2.48) in the third dimension. They are later assigned to scaled forms of the familiar laboratory time 

t  and proper time   as part of the URMT relativistic Doppler solution, Section (4). 

3.4 The URM5 Eigenvector Solution 

Just like the URM3 solution under Pythagoras conditions, this URM5 solution presented here is also a 
completely solved problem with an analytic solution. In [2], Appendix (I16), it is called a 'lifted' 
solution since it is basically a lift of (or derived from) the URM4 solution, which itself is a lift of the 
URM3 solution, and thus always retains an invariant, zero potential, under Pythagoras conditions, by 
definition. The complete solution set of eigenvectors to 50A  (3.5) is given in block matrix form in 

terms of the URM3 eigenvector solution as follows: 
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
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




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










3

5 0
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X

X , C ,   5550 XXA C , (3.13a) 
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0
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X00X

X Ct

C

ttt ,  (3.13b) 

    C ,   5550 XXA C  
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




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


30

50 0

0

X

X A , 0 , 05050 AXA , (3.13c) 
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
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
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0

0

0

0X

X CtB , 0 , 05050 BXA , (3.13d) 
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



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





















 33

550 00

0

0X

X

C

tC , 0 , 05050 CXA . (3.13e) 

The eigenvector equations are as per URM3 (2.40), but now with three zero eigenvectors A50X , B50X  

and C50X  instead of just one, 30X . This solution (3.13) forms the basis of the URMT formulation of 

STR as studied in the remainder of this paper. 
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Whilst the eigenvectors 5X  and A50X  are just embedded forms of their three-dimensional, URM3 

equivalents 3X  and 30X , with a zero fourth and fifth dimensional contribution (zero first two 

elements), the remaining three, 5X , B50X  and C50X  are not so simple. In particular, 5X  is a full 

five-element position vector and will be used to represent an STR event, (4.1) further below. Of the 
other two zero eigenvectors, B50X  is the URM4, 4-dimensional equivalent of URM3's 30X , and 

C50X  is the URM5 equivalent. 

Keep in mind that the eigenvalue C  is a velocity quantity, as per all dynamical variables under the 
SPI, and will be equated with the speed of light c , (4.13c) further below. 

The URM5 SPI is identical to that of URM3 (and URM4, not detailed here), Section (2.15). It has all 
the same physical properties as per URM3, but is now extended to five dimensions, this includes the 
natural calculus properties amongst the eigenvectors; Section (3.5) below. Lastly, note that the 5X  

solution (3.13b) is quadratic in the evolutionary parameters 4t  and 5t  for the URM3 3X  component 

only, i.e. the last three elements, whilst the first two elements, 52Ct  and 42Ct  respectively, are linear 

in 5t  and 4t . This means that, for large evolutionary times 0, 54 tt , the first two elements (fifth 

and fourth dimensions respectively) shrink relative to the first three dimensions (the last three 
elements), the solution thus exhibits the geometric property of compactification, i.e. the apparent 
shrinkage of higher dimensions with respect to the lower dimensions, which is fully detailed in [2]. 

3.5 URM5 Calculus Relations 

The URM3 calculus relations, Section (2.16), are also satisfied for this URM5 lifted solution (3.13). 
With more than one evolutionary parameter for four and higher dimensions, the standard calculus 

partial derivative 
it


 is now used in place of 
3dt

d
 for derivatives with respect to evolutionary time 

it , 5,4i  here, i.e. 

ii tt 






~ itΔ , 0it , 1 ii tt Δ . 

For URM5, the partial derivatives in the fourth and fifth dimensions are as follows: 

Bt 50
4

5 2X
X



  , derivative of position = twice velocity ( B50X ) 

Ct 50
5

5 2X
X



  , ditto ( c50X ) 





5

3

50 X
X

t
A , derivative of velocity = acceleration (  5X ) 





5

4

50 X
X

t
B , 
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



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50 X
X

t
C , ditto 

0
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5 

 

t

X
, 0

5

5 

 

t

X
, constant acceleration 


 



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t
, 
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


5
5

2
5

2

2X
X

t
 2nd derivative of position = twice acceleration (  5X ) 



From unity root matrix theory to special relativity 

Page 25 of 40 
Issue 2.0 18/12/2017 

 R J Miller, http://www.urmt.org 

 

4 The STR Doppler Solution 

This section maps the URM5 lifted solution, given in the previous section, to an STR event with a 
non-zero, relativistic interval, with the goal of representing a non-zero rest mass particle travelling at a 
sub-luminal velocity. 

4.1 An STR Event as an Eigenvector 

Under the SPI, the URM5 minus eigenvector, i.e. 5X  (3.13b), represents a position vector as for 

URM3 3X , Section (2.15), and therefore this five-element vector is suitable to represent what is, in 

STR, a four-vector position (or event). The vector 5X  (3.13b) is expanded in full, below, with a side-

by-side definition of a five-vector form of an STR event given in terms of position coordinates zyx ,,  
(see the following note), proper time  , laboratory time t  and speed of light c : 
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 URM5, (4.1a), 
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















ct

z

y

x

c

5X  STR (4.1b). (4.1) 

Important. The variables zyx ,,  here have reverted to their more familiar spatial definition, i.e. as  
position coordinates, rather than their URM3 interpretation as accelerations - the role of spatial 
coordinates is usually played by  ,,  in the SPI, Section (2.15). This switch to using zyx ,,  is for 

notational convenience (familiarity) only, and the eigenvectors 3X  and 5X  remain as acceleration 

vectors under the SPI, with eigenvectors 3X  and 5X  remaining as position vectors. 

The reason to use a minus sign in the first and last elements of 5X  (4.1b) is purely one of URMT 

convention, and done to keep the last element same as the last element '  ' of URM3's position 

eigenvector 3X  (2.40), which then also dictates the sign of the first element of 5X . 

Both 5X  vectors in (4.1) have a zero norm (see (4.5) below) and, in particular, the STR five-vector 

norm is zero in accordance with an invariant, non-zero, STR interval c , i.e. 

 0)()( 22222  ctzyxc , (4.2) 

where   and t  are related by the usual STR definitions: 

 t , (4.3) 

 
  2/1

1

cv
 , 1 , cv  . (4.4) 

Note that this   is not the same as the scale factor   in (2.7). 
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The zero norm (4.2) is represented in URMT by a conservation equation, i.e. the inner product of 5X  

and its reciprocal eigenvector 5X  (derived further below), i.e. 

 05
52

5  


 XXX , (4.5) 

which is basically the 5D Pythagoras equation; see (2.56) for the URM3, zero norm cases. 

Note that what is traditionally a non-zero, four-vector interval c  in STR, is converted to a five-
vector, zero norm in URMT. URMT treats numerous physical problems by adding an extra dimension 
to the eigenvector and converting it to a zero norm, Pythagorean eigenvector, see [3]. 

The reciprocal, row eigenvector 5X  (or conjugate 5X ) is defined in the usual URMT way by 

 T)( 5
5

5
5


  XTXX , (4.6) 

where the 55  URM5 matrix operator 5T  ( 5T ) is defined in block matrix form using the 44  

identity matrix 4I  as follows 

 










10

045
5

I
TT  (4.7) 

so that 5X  becomes, according to (4.6), 

  ctzyxc5X . 

It is noted that 5T  is a 5D form of the more familiar 4x4 Minkowski metric [7]. 

The URM5 5X  eigenvector (4.1a) is parameterised by the two, evolutionary, temporal parameters 4t  

and 5t , and also the URM3 temporal parameter 3t , in accordance with the URM3 solution for 3X  

(2.52), plus two of the four, non-temporal parameters slk ,,  and t , Section (2.12), only two of which 
are independent. 

Looking at the URM3 parametric solution in Section (2.12) and the URM5 eigenvector solution for 

5X  (4.1a), the parameters (except 5t ) are set to the following values to obtain the URMT 'Doppler 

solution' [3]: 

 0k , 0s , 03 t , tu  , 04 t , (4.8) 

Note that parameter t  in (2.47) is replaced by u  here to avoid a clash of notation with the STR 
laboratory time t , where the prime on u  also denotes an initial value. 

With 03 t , the 3X  vector is equal to its initial value, i.e.   333 )0( XX t  (2.51), which is given 

in terms of u  as follows, in accordance with (2.40), using 0s ,  tu    (4.8) and (2.50): 
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The URM3 vector 3X  (2.40) is invariant, and with 0k  (4.8) , then by (2.46) 3X  becomes 
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Substituting for 3X  and 3X  into 5X  (4.1a), and expanding in full, using 043  tt  (4.8), gives 
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The URMT position vector 5X  is thus seen to be a function of temporal parameters 5t , u  and l , 

where u  and l  are related to each other by the LDE (2.47), with u  replacing t , and 0s  (4.8), as 
in 

 
u

C
l


 . (4.10) 

Given l  is functionally dependent on u , then the URMT eigenvector 5X  (4.9) is parameterised by 

just the two parameters 5t  and u . 

The STR vector 5X  (4.1b) is also simplified to be compatible with the above, simplified form of 

5X  (4.9), with motion (velocity zv ) along the z  axis only, as follows: 
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0
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

X , 0x , 0y , tvz z , zvv  . (4.11) 

4.2 The Doppler Parameterisation 

With both the URMT and STR forms of the 5X  simplified, the problem now is to map the two 

URMT parameters 5t  and u  in 5X  (4.9) to the STR equivalent (4.11). By comparing these two 

vectors, the STR parameters ct  and z  (with   derived from t  by (4.3)) and URMT parameters 5t  
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and u  (with l  derived from u  by (4.10)), are mapped to each other as follows, in particular, the 
eigenvalue C  is finally equated with the speed of light c :  

 52t , (4.12a) 

 0x , (4.12b) 

 0y , (4.12c) 

 Cc  , (4.12d) 

 22
5

2 ltuz  , 
u

c
l


 , (4.12e) 

 22
5

2 ltuct  , (4.12f) 

 











22

5
2

22
5

2

ltu

ltu
cvz , (4.12g) 

Conversely, the URMT parameters 5t  and u  are given in terms of STR parameters ct  and z  by 

 
c

zct
t

2

)( 22

5


 , (4.13a) 

 
2

)( zct
u


 , (4.13b) 

 cC  , (4.13c) 

Some numeric examples of this parameterisation are given at the end of Section (6) in [3]. 

Notice from (4.12a) that URMT's temporal, variational parameter 5t  runs in the reverse direction to 

the proper time, and at half the rate. Whilst this could be changed by altering the eigenvalue relations 
(4.12d) or (4.13c), that equate C  directly with c , this isn't necessary, and it is preferable to keep C  
and c  identical. 

From the form of z  (4.12e) and zv  (4.12g), the following Doppler parameter   is formally defined 
in URMT as 

 
5

2

ct

u
 . (4.14) 

Note that this   is not the same as the scale factor   in (2.7). 

The STR velocity ratio (or 'normalised velocity')   is obtained from zv  (4.12g) as follows, using 

ucl  /  (4.12e): 
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and can be expressed in terms of 2 , after some rearrangement, as the following dimensionless ratio 

 
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

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1

12 . (4.16) 

Using cvz /  (4.15), this gives   as 
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 , 

which is none other than the dimensionless STR Doppler shift in wavelength [7]. 

Using   (4.14) and relations (4.12), the URM5 position eigenvector 5X  (4.9) can now be re-

expressed as 
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The URM5 acceleration vector 5X  and 'velocity' vector C50X  are also reproduced below from [3] as 

follows: 
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In fact, of most interest here is actually the above, invariant acceleration vector 5X , which is seen to 

be inversely proportional to the laboratory time t . With the two spatial coordinates x  and y  zero 

(second and third elements of 5X ), the non-zero acceleration za  is given by the fourth element, i.e. 

 






 


2

2 1




t

c
a z . (4.17) 

From this expression, for speeds close to the speed of light when 1  (4.15) and   is very large by 

(4.16), then the acceleration za  is approximated as 

 
t

c
a z  , 0 , 
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which is just the Hubble-equivalent, expansion acceleration. Evidently, if 0t  the solution blows up 
(quite literally) with a singularity. 

Given the age of the universe is approximately 14 billion years, i.e. )10( 10O  years, which equates to 

about 1710  seconds, and with smc /103 8  then the acceleration in this epoch is approximately 

(4.68) )10( 9 Oa z
2ms , URMT acceleration, 

which is the acceleration equivalent of the Hubble constant MpcmsH /104.28.73 13  (or 

mms /104.2 118  ), where mMpc 2210086.31  . This derives as follows: at distance r, the 

recession velocity is given by the Hubble law as Hrv  , and differentiating this gives the 
acceleration rHva   . Using rv   this becomes Hva  . For velocities near the speed of light 

Hcva    for cv  . Substituting for mmsH /104.2 118   and 18100.3  msc  gives 
210102.7  msa . 

The above gives the acceleration in the current epoch. However, at the very earliest, non-zero time, 

such as the Planck time sOt )10( 44 , then the acceleration is a huge 250 )10( msO . 
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5 The STR Mass Solution 

This section extends the lifted form of the URM5 matrix 50A  (3.11) by relaxing the constraint on 

dynamical variable M  (3.12) such that it is now non-zero, and defined as the 'reduced velocity', 
detailed next. 

5.1 The Reduced Velocity 

In URMT, a very useful quantity, termed the 'reduced-velocity', and denoted by the symbol M , is 
defined as follows: 

 

c

M  , cM 0  for 1 . (5.1) 

It is seen that with 1  then M  is less than the speed of light. 

The following two limiting cases are of note, derived from the definition of   (4.4), 

 cv      , 0M , (5.2) 

 0v    1 , cM  . (5.3) 

For a massless particle, e.g. a photon or graviton with a velocity that of the speed of light, then case 
(5.2) applies and M  is zero. For a particle at rest, with zero velocity, then case (5.3) applies and M  is 
the speed of light c . 

With these points in mind, M  is termed 'reduced' because it is zero at the speed of light and grows to 
the speed of light as the speed v  decreases to zero, i.e. it is the speed reduced from that of c , whereas 
v  increases from 0 to c . When M  is greater than zero it is considered equivalent to the speed v  of a 
particle with finite mass and sub-luminal velocity, i.e. cv   according to (5.4) below. 

From M  (5.1) and   (4.4) the following important relation between c , M and v  is obtained 

 2220 cvM  , (5.4) 

which rearranges to give an alternative form for defining M  as 

 22 vcM  , 

where the positive root is taken for positive   and c  (5.1). 

The relationship (5.4) is yet another Pythagoras equation, and there seems to be no escaping this 
simple equation throughout URMT physics. 

What makes M  extra special is that it is also a dynamical variable in the URM5 unity root matrix 

50A  (3.5), and not just an ad-hoc definition introduced for algebraic or physical convenience. 
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5.2 A Non-invariant, Non-zero Potential Solution 

To obtain a non-zero, non-invariant potential energy term, the unity root matrix 50A  (3.11) is now 

extended by addition of the reduced velocity M  (5.1) to become 

 

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
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


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AXX

X

X

A

tt

tM

tM

. (5.5) 

This M  is the same dynamical variable M  in the top row, second element of the general URM5 50A  

matrix (3.5). 

With a non-zero M , the URM5 characteristic equation (3.8) becomes 

 ))((0 2222 MC   , (5.6) 

and the eigenvalues are thus 

 0,, iMC  . (5.7) 

It is noted that if M  is zero then the eigenvalues reduce to 0,0,0,C (3.10), as expected for a 
zero potential energy, (5.9) below. 

In URM4 [2], two complex eigenvalues iV  also emerge for a non-zero potential V , and this 
suggests a connection between the URMT potential energy and mass, via the reduced, sub-luminal 
velocity M , as will become evident. 

With a non-zero M , the kinetic term K  (2.33) becomes 

 2222 )( MRQPK  , 

and keeping with 2222 RQPC   from URM3 (TBD), the kinetic term is thus now 

 22 MCK  . (5.8) 

Additionally, the potential V  is no longer zero but now 

 2MV  . (5.9) 

Disregarding (or factoring) the eigenvalue   for the zero eigenvalue in the characteristic equation 
(5.6), and rearranging, gives 

 222224 )( CMMC   . (5.10) 
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Comparing this with the revised kinetic term (5.8) and potential (5.9), then it can also be written as 

 224 VCK   . (5.11) 

Lastly, for eigenvalues C  this characteristic equation becomes 

 224 VCKCC  , (5.12) 

and dividing throughout by 2C , which is always greater than zero by (2.4), returns the familiar DCE: 

 VKC 2 . (5.13) 

which justifies the revised kinetic and potential definitions, (5.8) and (5.9) respectively. 

5.3 The Relativistic Energy-momentum Equation 

Now to compare with STR. Throughout URMT, starting right at the beginning with URM3 in [1] and 
extending to URM4 and URM5 in [2], the characteristic equation, i.e. the DCE, is considered an 
energy conservation equation (per unit mass), with a total energy given by the invariant eigenvalue 

2C . The eigenvalue C  is inevitably associated with the speed of light c  (4.13c), hence the familiar 

look to the relativistic energy formula 22 cCKE   (per unit mass) for a zero potential, i.e. 
0V  in (2.17). Much of URMT, particularly in [2], concentrates on zero potential energy solutions 

and, as such, all the energy is kinetic. In essence, all very much like a particle with a zero rest mass 

but, nevertheless, finite energy 2C . This is why, repeatedly, the invariant, zero potential solution, 
Section (3.3), is considered primarily a massless particle solution, i.e. a photon or graviton. The 
introduction of a non-zero dynamical variable M  now changes all that. 

Returning to the characteristic equation (5.12), it is noted to be fourth order in C . Furthermore, given 
it splits nicely into two terms, i.e. a kinetic and potential term, it can be directly compared with the 
STR relativistic energy-momentum equation 

 
2

0
222 EcpE  , (5.14) 

where, as usual, p  is the momentum of an object (particle) with relativistic mass m  and velocity v , 

i.e. mvp  , and the total energy E  is given by Einstein's equation: 

 2mcE  , (5.15) 

with the rest mass ( 0m ) energy 0E  also: 

 2
00 cmE  . (5.16) 

Expanding (5.14) in component form, i.e. 

 22
0

2222 )()()( cmcmvmc  , (5.17) 
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and dividing throughout by the mass 2m  gives 

 4

2

0224 c
m

m
cvc 






 . (5.18) 

Comparing this with the characteristic equation (5.12) gives the following associations of the energy 
terms, all, strictly speaking, per unit mass: 

 22 cCE  , per unit mass, 

 222 vMCK  , ditto, 

 2

2

02 c
m

m
MV 






 , ditto. (5.19) 

The kinetic term K  is just the earlier definition (5.4) of the reduced velocity for cC   (4.13c), i.e. 
222 vCM   (5.4). From STR [7], the ratio of masses mm0  is equal to the reciprocal of   (4.4), 

i.e. 

 
m

m01



, (5.20) 

and by substituting this ratio into the potential term (5.19), the dynamical variable M  is seen to be 
related to the eigenvalue (now also the speed of light) as in its original definition MC   (5.1). 

5.4 The URMT Rest-mass Energy Equation 

Lastly, and most importantly, using MC   (5.1) and cC   (4.13c), then the rest mass energy 0E  

(5.16), becomes 

 MCmE 00  , 

and since 0mm   by (5.20) then the rest mass energy can be written in terms of the URMT 

dynamical variable M  and eigenvalue C  as 

 mMCE 0 , URMT's rest mass energy equation. (5.21) 

Superficially, this is just a rewrite of 2
00 cmE  , with the rest mass term cm0   effectively replaced 

by mM , but what was the STR set { 0m , m , v , c }, of two masses and two velocities, is now replaced 

by a single mass and three velocities, { m , M , v ,C }, where the single, relativistic mass m  now 
cancels across the energy-momentum equation (5.17) such that URMT's equivalent equation becomes 
the Pythagorean relation given earlier (5.4), rearranged and written in terms of the eigenvalue C  as 

 222 vMC  , URMT's energy-momentum equation. (5.22) 
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Whilst it may be argued that both (5.21) and (5.22) are just rewrite's of STR's equivalent energy 
equations, the reader is reminded that the URMT, invariant eigenvalue C  originates from URM3 and 
a number-theoretic problem in linear algebra, Section (2.1). Furthermore, both energy equations, 
(5.21) and (5.22) are now symmetric, to within a sign, upon interchange of the velocities, i.e. M  and 

C  in mMCE 0 , and M , v  and C  in 222 vMC  . In particular, this now puts the abstract, 

reduced velocity M  on an equal footing with the familiar, terrestrial velocity v . The addition of M  
is seemingly just an extension of the URM5 lifted solution, yet it appears directly related to rest mass 
and also the potential energy (5.9). 

It would seem, therefore, that by starting bottom-up with a problem in number theory, i.e. obtaining 
the integer eigenvalues and eigenvalues of the matrix 50A  (5.5) according to an invariance principle, 

Section (2.6), the STR energy equations can be derived. Indeed, although not shown here, URMT can 
also relate a unity root matrix to both an event and its Lorentz transform [3]. 
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6 STR to Newton II 

So far, the URM5 STR solutions presented have been expressed in terms of the URM3 solution, whilst 
URM3 itself has not been explicitly expanded. However, as per Section (2.13), the URM3 eigenvector 
solution also evolves over time, and it is shown in this last section that, by equating URM3's 
evolutionary parameter 3t  to a scaled from of the proper time, the URM3 vector components can 

represent the position of an object under a constant acceleration as given by Newton's second law 
maF  , or just simply 'Newton II'. 

6.1 The Mass Eigenvector Solution 

The unity root matrix 50A  for the mass solution is reproduced below from (5.5) 
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 (5.5), 

with eigenvalues 

 0,, iMC  , (5.7). 

Whilst M  is now non-zero, denoting a sub-luminal velocity (5.1), and hence a particle with non-zero 
mass, the eigenvector 5X  remains the same embedded form of the invariant, URM3 acceleration 

eigenvector 3X , and likewise for the single, zero eigenvector 50X , i.e. 
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X , C  (3.13a),  
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30

50 0
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X

X A , 0  (3.13c). 

The temporal parameter 5t  is related to the proper time   as in the Doppler solution 52t  

(4.12a), but the temporal parameter 4t  is not zeroed, unlike (4.8), and, instead, related to the 

laboratory time t  as in 

 
24

t
t  . (6.1) 

With these settings, the five-vector position (STR event) eigenvector 5X  (4.1a) becomes 
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and the unity root matrix 50A  (5.5) is now 
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The scale factor 222 /)1( c  on 5X  (6.2) arises as a result of methods used in [3]. Its physical 

significance, if any, is not currently clear, albeit it does give the URM5 conservation equation 




5
5 XX  a fourth degree term in the quadratic velocities, 2C  and 2M ; see [3], Section (7). However, 

given 5X  is an eigenvector, and hence arbitrary to within a scale factor, it will be safely disregarded 

for now. Note that it could equally well be transferred on to the 5X  or 5X  eigenvectors, whilst 

keeping the same, invariant inner products. There are also two complex eigenvectors in this mass 
solution, i5X  and i5X  [3], but these are not shown or required here as unnecessary. 

6.2 Newton II 

The URM3 component of 5X  (6.2) can be converted to a Newtonian form using the evolutionary 

form of the 3X  eigenvector, reproduced below from Section (2.13), 

  33033
2
33 2 XXXX tt  (2.52), 

)0( 33030  tXX , )0( 333   tXX , (2.51), 

Beforehand, however, the URM3 temporal (evolutionary) parameter 3t  is related to laboratory time t  

as per 4t  (6.1), i.e. 

 
23

t
t  . 

By substituting this into 3X  (2.52), and then substituting 3X  into 5X  (6.2), the position vector 

5X , without any scale factor, becomes 
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Given 3X  represents a constant, negative acceleration, Section (2.15), with initial velocity 30X  and 

initial position 3X , then the URM3 component of 5X  (6.3) can now be expressed as the position 

vector r  of an object at time t , subject to a constant acceleration a , with initial velocity v , initial 
position r , as in: 
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  3303

2

2
XXXr t

t
 rva  tt 2

2

1
. 

 3Xa , constant acceleration, 

30Xv  , initial velocity, 

 3Xr , initial position. 

This is, of course, just Newton II, aF m , for constant acceleration a . Hence the URM5 mass 
solution is returned to a Newtonian form, and thereby completes this paper. 
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7 Summary 

URMT starts with three linear, Diophantine equations in three unknowns, where each unknown is 
coupled to the other two by three dynamical variables and their three conjugates -  all six dynamical 
variables defined as unity roots (or primitive roots). From this abstract starting point, and by 
application of an equally abstract invariance principle, a consistent physical interpretation of the 
resulting eigenvector solution is obtained. Notably, under the standard physical interpretation, Section 
(2.15), the eigenvectors can be associated with acceleration, velocity and position vectors that evolve 
with time, where time itself is a variational parameter. 

The eigenvector inner products are conservation equations and, for a unity eigenvalue, give the three 
most basic scalars {0,1,2}, all of which are invariant to temporal evolution or other variations in the 
dynamical variables and eigenvectors. The characteristic, eigenvalue equation of the unity root matrix 
can also be consistently equated with an energy conservation equation and, in particular, upon 
extension to higher dimensions is seen to be the relativistic energy-momentum equation, with the 
invariant eigenvalue none other than the speed of light. Furthermore, temporal evolution of the higher 
dimensions leads to the geometric property of compactification, where the higher dimensions appear to 
shrink relative to the lower dimensions over long evolutionary periods. 

An example, five-dimensional 'Doppler solution' shows a huge initial acceleration at the earliest 
instance of time, decaying in accordance with the Hubble expansion law. A second example shows 
how relativistic mass can be introduced implicitly into URMT by addition of a single, new dynamical 
variable, i.e. the 'reduced velocity'. This leads directly to the relativistic energy-momentum equation 
and a reformulation of the rest mass energy in a symmetric form involving both the reduced velocity 
and the speed of light. Lastly, such a solution is reduced to a Newtonian form in its first three 
dimensions. 

8 Conclusion 

What originated as a study in congruence relations and linear Diophantine equations, in particular with 
regard to their symmetry and invariants, appears to generate a surprisingly rich field of physical 
phenomena, and supports the author's premise that, at the smallest, Planck scale, nature reduces to 
some very simple rules, with its laws formulated as integer equations, and more the realm of number 
theory than physics. The laws of nature are thus reduced to the legal combinations of integers, which 
currently appear to be of quadratic degree, in particular hyperbolic and n-dimensional Pythagoras. 
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